

Microsoft Dynamics
®

 AX 2012

Developing Extensible Data

Security Policies

White Paper

The extensible data security framework is a powerful new
feature in Microsoft Dynamics AX 2012 that can enable
developers and administrators to provide comprehensive data

security using rich policies. This whitepaper describes the steps
involved in developing policies that have minimal performance

overheads.

Date: January, 2011

Author: Arindam Chatterjee, Principal Program Manager Lead,

Microsoft Dynamics AX

Send suggestions and comments about this document to
adocs@microsoft.com. Please include the title with your
feedback.

mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

2

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Table of Contents

Introduction .. 3

Data security policy concepts .. 3
Constrained table .. 3
Primary table ... 3
Policy query ... 3
Context ... 3

Developing an extensible data security policy... 3
Designing and modeling the policy query ... 4
Creating the policy .. 5
Adding constrained tables and views ... 6
Setting the policy context .. 8

Developing efficient extensible data security policies 9
Using extensible data security constructs to minimize performance overhead 9

Debugging extensible data security policies ... 11

Summary .. 13

3

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Introduction

The extensible data security framework is a new feature in Microsoft Dynamics® AX 2012 that enables
developers and administrators to secure data in shared tables such that users have access to only the
part of the table that is allowed by the enforced policy. This feature can be used in conjunction with
role-based security (also supported in Microsoft Dynamics AX 2012) to provide more comprehensive
security than was possible in the past.

Extensible data security is an evolution of the record-level security (RLS) that was available in earlier
versions of Microsoft Dynamics AX. Extensible data security policies, when deployed, are enforced,
regardless of whether data is being accessed through the Microsoft Dynamics AX rich client forms,
Enterprise Portal webpages, SSRS reports, or .NET Services.

This white paper outlines the steps that developers have to take to create new extensible data security
policies. It highlights strategies for minimizing the performance impact of these policies as well as
policy debugging techniques.

Data security policy concepts

When developing a data security policy, you need to become familiar with several concepts, such as

constrained tables, primary tables, policy queries, and context. This section outlines these concepts.
Subsequent sections will use these concepts to illustrate how they work together to provide a rich
policy framework.

Constrained table

A constrained table is the table or tables in a given security policy from which data is filtered or
secured, based on the associated policy query. For example, in a policy that secures all sales orders
based on the customer group, the SalesOrder table would be the constrained table. Constrained tables
are always explicitly related to the primary table in the policy.

Primary table

A primary table is used to secure the content of the related constrained table. For example, in a policy
that secures all sales orders based on the customer group, the Customer table would be the primary
table.

Policy query

A policy query is used to secure the constrained tables specified in a given extensible data security
policy. This query will return data from a primary table that is then used to secure the contents of the
constrained table.

Context

A policy context is a piece of information that controls the circumstances under which a given policy is
considered to be applicable. If this context is not set, then the policy, even if enabled, is not enforced.

Contexts can be of two types: role contexts, and application contexts. A role context enables policy

application based on the role or roles to which the user has been assigned. An application context

enables policy application based on information set by the application.

Developing an extensible data security policy

Developing an extensible data security policy involves the following steps:

1. Modeling the query on the primary table.

4

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

2. Creating the policy.

3. Adding the constrained tables and views.

4. Setting the context.

However, before you start developing a policy, you must understand the underlying requirements. You

should identify the set of constrained tables and analyze the relationships that these tables have with
the primary table. You should also analyze the data access patterns of the constrained tables, the
table sizes, and existing indexes on both the primary and constrained tables. All of these aspects
influence the impact that a policy will have on the performance of the application.

Designing and modeling the policy query

The policy query and the table or tables being constrained are the two most important aspects of an
extensible data security policy. The policy query will be added to the WHERE clause (or ON clause) on
all SELECT, UPDATE, DELETE and INSERT operations involving the specified constrained tables. Unless

carefully designed and tested, policy queries can have a significant performance impact. Therefore,
you should follow certain simple but important guidelines when developing an extensible data security
policy (see Developing efficient extensible data security policies later in this article for details).

As an example, we will walk through the development of a policy that will ultimately constrain records
in several tables, such as AssetTable and BankChequeTable, so that users who are vendors can only
retrieve their own records.

To design and develop the policy query for this policy:

1. Identify the primary table. In this case, the primary table is VendTable.

2. Create a modeled query under the AOT Queries node:

 Use VendTable as the first data source.

 Add other data sources as required by the Vendor data model.

5

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 1 shows the query.

Figure 1: Policy query on primary table

Creating the policy

Now that the policy query has been created, the next step is to create the policy itself under the AOT
Security > Policies node.

1. Right-click the AOT Security > Policies node, and select New Security Policy.

2. Set the PrimaryTable property on the policy to VendTable.

3. Set the Query property on the policy to VendProfileAccountPolicy.

4. Set the PolicyGroup property to Vendor Self Service.
When set, this property can be used by administrators and developers to quickly identify
groups of related policies. There is no run-time usage of this property.

5. If you want the primary table to be secured using this policy, set the ConstrainedTable
property to Yes.

6. Set the Enabled property to Yes or No. This property can be used to control whether the

policy will be enforced by the extensible data security runtime.

7. Set the ContextType property to one of the following:

 ContextString – Set the property to this value if a global context is to be used to
determine whether the policy should be applied. When required, this context string needs
to be set by the application using the XDS::SetContext API.

 RoleName – Set the property to this value if the policy should be applied only if a user in
a specific role accesses the constrained tables.

 RoleProperty – Set the property to this value if the policy is to be applied only if the user

is a member of any one of a set of roles that have the ContextString property set to the
same value (see Setting the policy context later in this article for details for more details).

6

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The example policy created can be seen in Figure 2. Note that the ContextType property is currently
set to the value ContextString, but the ContextString property is empty. This combination implies
that when enabled, this policy will always be applicable.

Figure 2: Policy properties

Adding constrained tables and views

Now that the policy query is in place and the policy has been created, the next step is to add the
constrained tables and views that contain the data that will be secured by this policy.

To add constrained tables or views:

1. Right-click the Constrained Tables node.

2. Click New > Add table to add a constrained table, for example, the AssetBook table.

When adding a constrained table, you must also choose the relationship to be used to join the
primary table with this constrained table.

3. Click New > Add View to add a constrained View to this policy.

Repeat these steps for every constrained table or view that needs to be secured through this policy.

7

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 3 shows what such a policy would look like in the AOT.

Figure 3: Final VendProfileAccount policy

At this point, the policy is ready for deployment. When the Enabled property is set to Yes, the policy
will become fully operational for all users attempting to access the tables (or views) in the

Constrained Tables node. Please note that security policies are not applied for system administrators
(i.e. users in the SysAdmin role).

8

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Setting the policy context

Based on the original requirements, the policy needs to be modified to apply only to users assigned to
the vendor role. The following changes will have to be made to achieve that:

1. Change the ContextType property on the policy node to RoleProperty.

2. Set the ContextString property on the policy node to ForAllVendorRoles (see Figure 4).

Figure 4: Policy with role context

Now, to associate this policy with all the vendor roles, the ForAllVendorRoles context must be
applied to the appropriate roles.

1. Navigate to the AOT node corresponding to each role that needs to be associated with this
policy, for example, the VendVendor role.

9

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

2. Set the ContextString property on the VendVendor role node to ForAllVendorRoles (see
Figure 5).

Note The ContextString property is not localized. Therefore, only culture-neutral strings
should be used for this property.

Figure 5: Setting context on the vendor roles

Developing efficient extensible data security policies

As mentioned before, applying extensible data security policies on any constrained table will affect the
run-time performance of queries on that table. When developing policies, you should keep the
following principles in mind:

 Follow standard best practices of developing efficient queries. For example, create indexes
on join conditions.

 Reduce the number of joins in the query. Complex and normalized data models can lead to

queries with a very large number of joins. Consider changing the data model or adopting
patterns such as extensible data security constructs to reduce the number of joins at run
time.

Using extensible data security constructs to minimize performance

overhead

Rich policy requirements and complex underlying data models can often lead to policy queries that are
not only intricate but that also involve joins across a large number of tables. Not surprisingly,
extensible data security policies that include such queries can cause significant performance problems.

However, in many cases, a significant portion of the policy query retrieves static data such as legal

entities for the logged-on user and departments to which they belong.

10

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The extensible data security framework provides a way by which this static portion of the policy data
can be retrieved just once for a given client session and then reused in subsequent policy applications.

Extensible data security constructs are temporary tables that are populated once for every client
session. They exist in the AOT under the Data Dictionary > Tables node (see Figure 6).

Use the XDS table method to create a temporary table as an extensible data security construct. This
method is available for developers to write X++ logic to populate the temporary table. Invoke the
method the first time that a policy query with the construct as a data source is used. After the
temporary table is populated, subsequent policy queries will use the temporary table.

Figure 6: MyLegalEntitiesForRole construct

11

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 7 shows an example of a policy query that leverages the MyLegalEntitiesForRole construct.

Figure 7: Policy query using MyLegalEntitiesForRoles

The HcmXdsApplicantLegalEntity query involves joins across four data sources. The fourth data
source is the MyLegalEntitiesforRole construct, which encapsulates several joins. If an extensible

data security construct were not used, this query would have involved joins across four more tables on
every policy application—a significant performance overhead.

In this scenario, leveraging extensible data security constructs converted a policy query with seven or
more joins into a policy query with four joins—a significant performance gain.

Debugging extensible data security policies

One of the common issues reported when a new extensible data security policy is deployed is that an
unexpected number of rows are being returned from a given constrained table. For example, more
sales orders are being returned than would be expected if the sales order table were being constrained
by a given customer group.

The first thing to do in such scenarios is to review the SQL query being generated. In more recent
builds of Microsoft Dynamics AX 2012, the extensible data security framework provides an easy
debugging method. The X++ select has been extended with the generateonly command that instructs
the underlying data access framework to generate the SQL query without actually executing it. The
generated query can be retrieved using simple method calls.

12

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The following job runs a select query on the SalesTable with a generateonly command. It then calls
the getSQLStatement() on the SalesTable and dumps the output using the info API.

static void VerifySalesQuery(Args _args)

{

 SalesTable salesTable;

 XDSServices xdsServices = new XDSServices();

 xdsServices.setXDSContext(1, ‘’);

 //Only generate SQL statement for custGroup table

 select generateonly forceLiterals CustAccount, DeliveryDate from salesTable;

 //Print SQL statement to infolog

 info(salesTable.getSQLStatement());

 xdsServices.setXDSContext(2, ‘’);

}

The extensible data security policy development framework further eases this process of doing some
advanced debugging by storing the query in a human-readable form. This query and others on a given

constrained table in a policy can be retrieved by using the following Transact-SQL query on the
database in the development environment (AXBDEV in this example):

SELECT [PRIMARYTABLEAOTNAME], [QUERYOBJECTAOTNAME],

 [CONSTRAINEDTABLE], [MODELEDQUERYDEBUGINFO],

 [CONTEXTTYPE],[CONTEXTSTRING],

 [ISENABLED], [ISMODELED]

FROM [AXDBDEV].[dbo].[ModelSecPolRuntimeEx]

Figure 8 shows the query results.

Figure 8: Query output

13

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

As you can see in Figure 8, the query that will be appended to the WHERE clause of any query to the
AssetBook table is available for debugging. Other metadata, such as LayerId, is also available if
needed.

The first debugging technique is recommended for most scenarios.

Summary

The extensible data security framework is a powerful new feature in Microsoft Dynamics AX 2012 that
has been made available to developers and customers to address rich data security policy scenarios.
This white paper introduced the concepts related to extensible data security and provided a step-by-
step guide to developing an extensible data security policy. As with any powerful feature, developers
must be aware of the issues that can crop up. This whitepaper covered some tips and tricks and

framework-provided constructs that help alleviate performance issues and ease any debugging that
might be required.

14

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

This document supports a preliminary release of a software product that may be changed substantially prior to final
commercial release. This document is provided for informational purposes only and Microsoft makes no warranties,
either express or implied, in this document. Information in this document, including URL and other Internet Web
site references, is subject to change without notice. The entire risk of the use or the results from the use of this
document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names,
e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with
any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended
or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, the Microsoft Dynamics Logo, and Microsoft Dynamics are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

