Microsoft Dynamics® AX 2012

Developing Extensible Data
Security Policies

White Paper

The extensible data security framework is a powerful new
feature in Microsoft Dynamics AX 2012 that can enable
developers and administrators to provide comprehensive data
security using rich policies. This whitepaper describes the steps
involved in developing policies that have minimal performance
overheads.

Date: January, 2011

Author: Arindam Chatterjee, Principal Program Manager Lead,
Microsoft Dynamics AX

Send suggestions and comments about this document to
adocs@microsoft.com. Please include the title with your
feedback.

A

-Microsoft Dynamics

mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

Table of Contents

3 1o oo Yo Lot o o] o N |

Data security policy conceptsS.....iciviriiriimiemssmsmssms s s s s s ssasssnnsnnns 3

(o] a1 =YL aT=To I =] o] 1 PP 3
T g =TV =1 o] 1 PP 3
o0 [0y e 1= N 3
(0] 0 =T 3

Developing an extensible data security poliCy.....ccciviciiiiiinnismne s nnn s ssnnnsnnne e 3

Designing and modeling the POliCY QUENY ...t et ae e 4
Creating the POIICY v vttt E e 5
Adding constrained tables @and VIEWSiviiiiiiiii i 6
Setting the POliCY CONEEXE Luiitii i e et r e et e a e et e e e e eees 8

Developing efficient extensible data security policies......c..cc.ccvvvirieiiriennen 9
Using extensible data security constructs to minimize performance overhead.............cocovvviiininennn. 9

Debugging extensible data security policiescccvvrvimrvirsesssesssesssnssnnnna 11

SUMMAIY ciueeiiemiinssnssasssasssnsssnssanssansassssnsssnsnsnssanssnnssnsssnsssnsnnnsnnnssnnsnnsnnnsnnnss L3

2

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Introduction

The extensible data security framework is a new feature in Microsoft Dynamics® AX 2012 that enables
developers and administrators to secure data in shared tables such that users have access to only the
part of the table that is allowed by the enforced policy. This feature can be used in conjunction with
role-based security (also supported in Microsoft Dynamics AX 2012) to provide more comprehensive
security than was possible in the past.

Extensible data security is an evolution of the record-level security (RLS) that was available in earlier
versions of Microsoft Dynamics AX. Extensible data security policies, when deployed, are enforced,
regardless of whether data is being accessed through the Microsoft Dynamics AX rich client forms,
Enterprise Portal webpages, SSRS reports, or .NET Services.

This white paper outlines the steps that developers have to take to create new extensible data security
policies. It highlights strategies for minimizing the performance impact of these policies as well as
policy debugging techniques.

Data security policy concepts

When developing a data security policy, you need to become familiar with several concepts, such as
constrained tables, primary tables, policy queries, and context. This section outlines these concepts.
Subsequent sections will use these concepts to illustrate how they work together to provide a rich
policy framework.

Constrained table

A constrained table is the table or tables in a given security policy from which data is filtered or
secured, based on the associated policy query. For example, in a policy that secures all sales orders
based on the customer group, the SalesOrder table would be the constrained table. Constrained tables
are always explicitly related to the primary table in the policy.

Primary table

A primary table is used to secure the content of the related constrained table. For example, in a policy
that secures all sales orders based on the customer group, the Customer table would be the primary
table.

Policy query

A policy query is used to secure the constrained tables specified in a given extensible data security
policy. This query will return data from a primary table that is then used to secure the contents of the
constrained table.

Context

A policy context is a piece of information that controls the circumstances under which a given policy is
considered to be applicable. If this context is not set, then the policy, even if enabled, is not enforced.

Contexts can be of two types: role contexts, and application contexts. A role context enables policy
application based on the role or roles to which the user has been assigned. An application context
enables policy application based on information set by the application.

Developing an extensible data security policy
Developing an extensible data security policy involves the following steps:

1. Modeling the query on the primary table.

3

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

2. Creating the policy.
3. Adding the constrained tables and views.
4. Setting the context.

However, before you start developing a policy, you must understand the underlying requirements. You
should identify the set of constrained tables and analyze the relationships that these tables have with
the primary table. You should also analyze the data access patterns of the constrained tables, the
table sizes, and existing indexes on both the primary and constrained tables. All of these aspects
influence the impact that a policy will have on the performance of the application.

Designing and modeling the policy query

The policy query and the table or tables being constrained are the two most important aspects of an
extensible data security policy. The policy query will be added to the WHERE clause (or ON clause) on
all SELECT, UPDATE, DELETE and INSERT operations involving the specified constrained tables. Unless
carefully designed and tested, policy queries can have a significant performance impact. Therefore,
you should follow certain simple but important guidelines when developing an extensible data security
policy (see Developing efficient extensible data security policies later in this article for details).

As an example, we will walk through the development of a policy that will ultimately constrain records
in several tables, such as AssetTable and BankChequeTable, so that users who are vendors can only
retrieve their own records.

To design and develop the policy query for this policy:
1. Identify the primary table. In this case, the primary table is VendTable.
2. Create a modeled query under the AOT Queries node:
e Use VendTable as the first data source.

e Add other data sources as required by the Vendor data model.

4

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 1 shows the query.

B AOT - \Queries =] N Query YendProfileAccountPolicy =l
= -
=y < B S
= RO ACRPOSTE OIS OTCE v TET 1) ~ PrUDErtiBS |CatE Uries
j} wendPostPaymJournal_Madsys) _I d I
B ¥ Methods HueryType Join ==
=l 5 Data Sources Mame YendProfileAccountPolic
= E‘h YendTabledvendTable) Title
= Fields
O E Ranges Farm SysluemFomm
= 53 Diata Sources UserLlpdate Tes
= faﬂ DirPersonExternalPartyDirPersonExternalPz Yersion 195
O = Fields -
R Ranges Literals Defaclt
Bl 57 Data Sources Interactive "es
= Ifilh DirPersonlser(DirPersonllser)
= riids AllowCheck Mo
El 5 rangss Searchablz Mo
O & =3 User CreatedBy &dmin
Daka Sources 5
=3 Relations Ereat!cunD.ate 101842000
El =5 Relations CreationTime 09:32:44 pm —
Sa YendTable.Party == DirPersonExker EhangedB_l,l i drmiity
= Group By
B Having B ChangedD ate 104184200
_ 41 order By ChangedTime 09:32:44 pm
m} % Dependent Objects - P (CaNCAMMA NANG ACH0

< | | Ll

Figure 1: Policy query on primary table

Creating the policy

Now that the policy query has been created, the next step is to create the policy itself under the AOT
Security > Policies node.

1.

2
3.
4

Right-click the AOT Security > Policies node, and select New Security Policy.
Set the PrimaryTable property on the policy to VendTable.
Set the Query property on the policy to VendProfileAccountPolicy.

Set the PolicyGroup property to Vendor Self Service.
When set, this property can be used by administrators and developers to quickly identify
groups of related policies. There is no run-time usage of this property.

If you want the primary table to be secured using this policy, set the ConstrainedTable
property to Yes.

Set the Enabled property to Yes or No. This property can be used to control whether the
policy will be enforced by the extensible data security runtime.

Set the ContextType property to one of the following:

e ContextString - Set the property to this value if a global context is to be used to
determine whether the policy should be applied. When required, this context string needs
to be set by the application using the xDs: :SetContext API.

¢ RoleName - Set the property to this value if the policy should be applied only if a user in
a specific role accesses the constrained tables.

e RoleProperty - Set the property to this value if the policy is to be applied only if the user
is a member of any one of a set of roles that have the ContextString property set to the
same value (see Setting the policy context later in this article for details for more details).

5

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The example policy created can be seen in Figure 2. Note that the ContextType property is currently
set to the value ContextString, but the ContextString property is empty. This combination implies
that when enabled, this policy will always be applicable.

El Security Policy ¥YendProfileAccount | _ | O]

Properties ICategDriBS I

m‘v"endprofilaﬁccount)=
Label Security policy for external
PrimaryT able YendT able
Query YendProhleAccountPolicy
PolicyGroup Yendor Self Service
ConstrainedT able |Yes
Enabled Mo
HelpT ext
ContextTyupe ContextString
ContextString
RaleM ame
CreatedBy Admin
CreationD ate 104212000 —
CreationT ime 10:17:54 pm
ChangedBy
ChangedD ate 10212010
A ——— ET T =— [

Figure 2: Policy properties

Adding constrained tables and views

Now that the policy query is in place and the policy has been created, the next step is to add the
constrained tables and views that contain the data that will be secured by this policy.

To add constrained tables or views:
1. Right-click the Constrained Tables node.
2. Click New > Add table to add a constrained table, for example, the AssetBook table.

When adding a constrained table, you must also choose the relationship to be used to join the
primary table with this constrained table.

3. Click New > Add View to add a constrained View to this policy.

Repeat these steps for every constrained table or view that needs to be secured through this policy.

6

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 3 shows what such a policy would look like in the AOT.

B ADT - "Security

FEX RS-

FMELRestrict{usr) N

FMselfServiust)

|SecurityPoIicy1(sy5)

= YendProfiledccount{sys) [3Y3 Model]

El 3 cConstrained Tables
(@ AssetBook —
(ﬁ AssetBookMerge
(s hssetDepBook
(@ AssetTable
(ﬁ BarkCentralBankPurpose
(ﬁ BankChequeReprints
(ﬁ BarkChequeTable
(ﬁ BankLCImport
[
| | W

Figure 3: Final VendProfileAccount policy

At this point, the policy is ready for deployment. When the Enabled property is set to Yes, the policy
will become fully operational for all users attempting to access the tables (or views) in the
Constrained Tables node. Please note that security policies are not applied for system administrators
(i.e. users in the SysAdmin role).

7

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Setting the policy context

Based on the original requirements, the policy needs to be modified to apply only to users assigned to
the vendor role. The following changes will have to be made to achieve that:

1. Change the ContextType property on the policy node to RoleProperty.
2. Set the ContextString property on the policy node to ForAllVendorRoles (see Figure 4).

Properties | Categories |
Mame YendProhleAccount =
Label Security policy for external
PrimaryT able YendT able
Query YendProhleAccountPolicy
PolicyGroup Yendor Self Service
ConstrainedT able [Yes
Enabled Mo
HelpT ext
ContextType RoleProperty
Context5tring ForAllWendorRoles
R aleM ame
CreatedBy A
CreationDr ate 10/21/2010 —
CreationT ime 10:17:54 pm
ChangedByp
ChangedD ate 102152010
e e e AT o A4 CA4 . ;I

Figure 4: Policy with role context

Now, to associate this policy with all the vendor roles, the ForAllVendorRoles context must be
applied to the appropriate roles.

1. Navigate to the AOT node corresponding to each role that needs to be associated with this
policy, for example, the VendVendor role.

8

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

2. Set the ContextString property on the VendVendor role node to ForAllVendorRoles (see
Figure 5).

Note The ContextString property is not localized. Therefore, only culture-neutral strings
should be used for this property.

B8 ADT - "Security A [=] EF ||[N Role Yend¥endor _ (O =|
| e B ILI] Properties |Categ.:.ries|
[+ & -
L Trade3alesManagerisys) J Name Vend¥endor
TradeSalesRepresentativelsys) Label Vendor [external)
vendInveiceAccountsPayableClerkisys) Description External user in vendor relat
VendInvoiceAccountsPayvableManager(sys) Enabled v
VendPurchasingfgent{sys) naze =
g S i b - PastD atatcoess Delete
' "”:r"j"”:"j"'”":':":"'l 545 Mocel] CurrentDatabccess (Delete
- DL_":'_TS FutureDatadccess Delete
- Privileges ContextStning ForAllYendorRoles
1 Policies -
— CreatedBy ik
g Permissions CreationD ate 10/18/2010
1 subRoles —
CreationTime 03:44:51 pm
YendvYendorAccountManagersys) -
VendvendorPortalAdministrator{sys) ChangedBy Admin
o o b ChangedD ate 1041842010
'-.I:T\:S'u::reTﬁrour::EﬂZ;aZg(svs) ChangedTime 03:44:51 pm
WiMSHarehoussWorker(sys) Origin {E0OB5119A-7ADG-4FC5-96B1
Model 575 Model
aﬁ Process Cyiles =
1] | W

Figure 5: Setting context on the vendor roles

Developing efficient extensible data security policies

As mentioned before, applying extensible data security policies on any constrained table will affect the
run-time performance of queries on that table. When developing policies, you should keep the
following principles in mind:

e Follow standard best practices of developing efficient queries. For example, create indexes
on join conditions.

e Reduce the number of joins in the query. Complex and normalized data models can lead to
queries with a very large number of joins. Consider changing the data model or adopting
patterns such as extensible data security constructs to reduce the number of joins at run
time.

Using extensible data security constructs to minimize performance
overhead

Rich policy requirements and complex underlying data models can often lead to policy queries that are
not only intricate but that also involve joins across a large humber of tables. Not surprisingly,
extensible data security policies that include such queries can cause significant performance problems.

However, in many cases, a significant portion of the policy query retrieves static data such as legal
entities for the logged-on user and departments to which they belong.

9

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The extensible data security framework provides a way by which this static portion of the policy data
can be retrieved just once for a given client session and then reused in subsequent policy applications.

Extensible data security constructs are temporary tables that are populated once for every client
session. They exist in the AOT under the Data Dictionary > Tables node (see Figure 6).

Use the XDS table method to create a temporary table as an extensible data security construct. This
method is available for developers to write X++ logic to populate the temporary table. Invoke the
method the first time that a policy query with the construct as a data source is used. After the
temporary table is populated, subsequent policy queries will use the temporary table.

S AOT - Data Dictionary' Tables

| = B I@ :!EI
— m
[MarkupTable
[MarkupTmpallocation
[MarkupTmpDetails
[MarkupTmpMaxamountyalidation
[E MarkupTmpTatals
[MarkupTmpTrans_FI
[T MarkupTolerance
[mMarkupTrans
[T MarkupTransHistory
[MarkupTransMapping
[myDirectreparts
[MyInternalOrganizationsForRole{var)
El [MyLegalEntitiesForRole
= Fields
ﬁ Field Groups
.E Indexes
[Full Text Indexes
%3 Relations
a Deletedctions

B i} Methods
[T mMyLegalErtityForworker
[mMyRoles
[nePCodesTable_FR
EE MumberSequenceDatatype
EE MumberSequencelatatypeParameter Type
EE MurnberSequenceGroup
[MumberSequenceGroupRef
EE MurnberSequenceHistory
[MumberSequenceList

FA threharSamisneab aFaranca

EH

HEEEH

A

public RefreshFrequency XD5()

g)
a
{
CompanyInfo company ;
OMExplodedOrganizationSecurityGraph omGraph ;
OMUserRoleOrganization userRolelrg;
MyRoles roles;
MyLegalEntitiesForRole myLegalEntitie:
OMInternalOrganization omInternalOrg; —
int64d iNumRecsInser
/7 First insert oll Legol entities that were selected :
insert_recordset mylLegalEntities(Name,
Languageld,
MameAlias,
PartyNumber,
LegalEntityID,
Tax1899RegNum,
UPSNum,
Key,
BranchId,
Orgld,
BranchNumber,
EnterpriseNumber,
IssuingSignature)
select
Name,
Languageld,
NameAlias,
PartyNumber, LI
oo =] 1

Figure 6: MyLegalEntitiesForRole construct

10

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Figure 7 shows an example of a policy query that leverages the MyLegalEntitiesForRole construct.

8% ADT - \Queries

|5 B @ % i |

=] | xl =+ | || Data Source MyLegalEntitiesForRole{MyLegalEntitiesForRole)

|

Propeties | Categories |

E_;:i Ranges
S| E—E Data Sources

= Fields
E_';i Ranges
= Eﬁ Drata Sources

= Fields
E_;:i Ranges
B 59 Data Sources
&
53 Relations
53 Relations
[E] Group By
I?: Having

B (g5 HRMApplication{HRMApplication)

= Eﬁ CompanyInfofCompanyInfo)

LegalEntitiesForR,

5 HemiworkerListPagePreviewPane ;I i — e e e
j?HcmWorkerLoanequuipment =0 PSSR U8 IR
:_‘?HcmWDrkerLookup able yLegalEntitiesForRole
= HemiworkerMorelnformation Lab_el
5 HemiwarkerPositions Uniqueld 1005
5 HemwiorkerPrimaryaddress C.ompany
= HemworkerResume F?rstDnIy Mo
5 HemiworkersHiredInPeriod FirstFast ND.
= Hemiorker kil Allovwddd Al fields
5 Hemiwarkerskills Fe_lchMode 1:1_ _
5 HemwiorkershiotassignedT oPositions JoinMode E xistsJoin
El 5 HemidsapplicantLegalEntity iy gp;:l?te :0

-/ Methods E:aabizzs Yss

: ES' ;;taHi;L}:cels' 1 SelectwithRepeatableRead Ma

prlicantiHomapplicant) o o
= Fields

eqgalEntitiesForRole)

. Al =

Figure 7: Policy query using MyLegalEntitiesForRoles

The HcmXdsApplicantLegalEntity query involves joins across four data sources. The fourth data
source is the MyLegalEntitiesforRole construct, which encapsulates several joins. If an extensible
data security construct were not used, this query would have involved joins across four more tables on
every policy application—a significant performance overhead.

In this scenario, leveraging extensible data security constructs converted a policy query with seven or
more joins into a policy query with four joins—a significant performance gain.

Debugging extensible data security policies

One of the common issues reported when a new extensible data security policy is deployed is that an
unexpected number of rows are being returned from a given constrained table. For example, more
sales orders are being returned than would be expected if the sales order table were being constrained
by a given customer group.

The first thing to do in such scenarios is to review the SQL query being generated. In more recent
builds of Microsoft Dynamics AX 2012, the extensible data security framework provides an easy
debugging method. The X++ select has been extended with the generateonly command that instructs
the underlying data access framework to generate the SQL query without actually executing it. The
generated query can be retrieved using simple method calls.

11

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

The following job runs a select query on the SalesTable with a generateonly command. It then calls
the getSQLStatement() on the SalesTable and dumps the output using the info API.
static void VerifySalesQuery(Args _args)
{
SalesTable salesTable;

XDSServices xdsServices = new XDSServices();
xdsServices.setXDSContext (1, ‘');

//0nly generate SQL statement for custGroup table

select generateonly forceliterals CustAccount, DeliveryDate from salesTable;

//Print SQL statement to infolog
info(salesTable.getSQLStatement ()) ;

xdsServices.setXDSContext (2, ‘');

The extensible data security policy development framework further eases this process of doing some
advanced debugging by storing the query in a human-readable form. This query and others on a given
constrained table in a policy can be retrieved by using the following Transact-SQL query on the
database in the development environment (AXBDEYV in this example):

SELECT [PRIMARYTABLEAOTNAME], [QUERYOBJECTAOTNAME],
[CONSTRAINEDTABLE], [MODELEDQUERYDEBUGINFO],
[CONTEXTTYPE], [CONTEXTSTRING],

[ISENABLED], [ISMODELED]
FROM [AXDBDEV]. [dbo].[ModelSecPolRuntimeEx]

Figure 8 shows the query results.

| QUERYOBJECTAQOTNAME | CONSTRAINEDTABLE | MODELEDQUERYDEBUGINFO L
1 VendProfileAccountPolicy AssetBook SELECT * FROM AssetBook (AssetBook_1) EXISTS JOIN %' FROM VendTable(VendTatl...
2 | VendProfileAccountPolicy | AssetBookMerge SELECT * FROM AssetBookMerge(AssetBookMerge_1) EXISTS JOIN % FROM VendTa...
3 | VendProfleAccountPolicy AssetDepBook SELECT * FROM AssetDepBook{Asset DepBook_1) EXISTS JOIN ' FROM VendTablefV...
4 | VendProflefccountPolicy AssetTable SELECT * FROM Asset Table(Asset Table_1) EXISTS JOIN X' FROM VendTable(VendTa...
5 | VendProfleAccountPolicy BankCentralBankPupose SELECT * FROM BankCentralBank Purpose(BankCertralBank Fupose_1) EXISTS JOIN"..
6 | VendProfleAccountPolicy BankChequeReprints SELECT * FROM BankChequeReprints(BankChequeReprints_1) EXISTS JOIN ' FROM ..
7 | VendProfleAccountPolicy BankChequeTable SELECT * FROM BankCheque Table(BankChequeTable_1) EXISTS JOIN X' FROM Vend...

Figure 8: Query output

12

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

As you can see in Figure 8, the query that will be appended to the WHERE clause of any query to the
AssetBook table is available for debugging. Other metadata, such as Layerld, is also available if
needed.

The first debugging technique is recommended for most scenarios.

Summary

The extensible data security framework is a powerful new feature in Microsoft Dynamics AX 2012 that
has been made available to developers and customers to address rich data security policy scenarios.
This white paper introduced the concepts related to extensible data security and provided a step-by-
step guide to developing an extensible data security policy. As with any powerful feature, developers
must be aware of the issues that can crop up. This whitepaper covered some tips and tricks and
framework-provided constructs that help alleviate performance issues and ease any debugging that
might be required.

13

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989
Worldwide +1-701-281-6500
www.microsoft.com/dynamics

This document supports a preliminary release of a software product that may be changed substantially prior to final
commercial release. This document is provided for informational purposes only and Microsoft makes no warranties,
either express or implied, in this document. Information in this document, including URL and other Internet Web
site references, is subject to change without notice. The entire risk of the use or the results from the use of this
document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names,
e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with
any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended
or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, the Microsoft Dynamics Logo, and Microsoft Dynamics are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

14

DEVELOPING EXTENSIBLE DATA SECURITY POLICIES

http://www.microsoft.com/dynamics

