

Microsoft Dynamics
®

 AX

How to Write Data Upgrade

Scripts for

Microsoft Dynamics AX 2012

April 5, 2011

White Paper

This document describes how to use the Microsoft Dynamics AX Data
Upgrade Framework and to write data upgrade scripts for customer data
upgrade data models (Microsoft Dynamics AX tables).

Disclaimer: This is pre-release documentation of a preliminary nature, and is
subject to change any time, without notice. Microsoft cannot guarantee the
accuracy of any information provided herein.

http://www.microsoft.com/dynamics/ax

UPGRADE

http://www.microsoft.com/dynamics/ax

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 2

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your

people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar

Microsoft software, automating and streamlining financial, customer relationship, and supply chain processes in

a way that helps you drive business success.

U.S. and Canada Toll-Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release. This
document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information
in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the
results from the use of this document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-
mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright
laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2011 Microsoft. All rights reserved.

Microsoft, BizTalk, Excel, Microsoft Dynamics, the Microsoft Dynamics logo, Outlook, SharePoint, SQL Server, and Visual Studio are trademarks
of the Microsoft group of companies.

All other trademarks are property of their respective owners.

http://www.microsoft.com/dynamics

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 3

Contents

Introduction .. 6

When is a Data Upgrade Script Needed? .. 7

1. Terms and Abbreviations .. 7

How to Upgrade Data for a Major Release or Service Pack10

The Preprocess Upgrade Checklist (souce environment) .. 12

Add Items to the Upgrade Checklist ... 16

The Data Upgrade Framework for the Target Environment18

SYS Versions and Data Upgrade of Interim SYS releases ... 21

Data Upgrade for Service Packs ... 22

Data Upgrade for Customization... 22

Create a single upgrade script that combines changes across multiple product versions 23

Using Configuration Key to Remove Obsolete Objects after Upgrade .. 23

Data Upgrade Scripts in the target environment .. 24

Writing Data Upgrade Scripts for Target Environment ... 26

Writing Data Upgrade Scripts for ISV solution in the Target Environment .. 28

Upgrade script configuration keys .. 29

Script Dependencies ... 31

The Data Upgrade Framework for the Source Environment35

Defining transformation and preprocessing scripts .. 35

i) Create transformation .. 36

ii) Define source table .. 36

iii) Define source fields ... 36

i) Per Company To Global Table.. 37

ii) Schedule preprocess scripts ... 37

iii) Save transformation .. 38

iv) Define dependencies between transformations .. 38

v) Supporting Pause/Resume Functionality and Committing Data in Batches 39

i) Logging Data Issues in Validation Scripts ... 44

j) Modify a subset of records in a table during upgrade ... 45

Writing Data Upgrade Scripts for Source Environment .. 47

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 4

Writing Live preprocessing scripts .. 47

Writing Delta and single user mode preprocessing scripts ... 48

Best Practices for Writing Data Upgrade Scripts ...50

Best Practice Checks ... 50

In Microsoft Dynamics AX 2010, there are now several best practice checks that help to verify the

completeness of upgrade script attributes. ... 50

Transaction and Idempotency .. 51

Coding Best Practices .. 53

Indicating Progress .. 53

Documenting Scripts ... 53

Deleting a Table or Field from the Data Model .. 53

Unique Indexes .. 54

Consideration for date effective table in upgrade script ... 55

Preventing Copying of Table Data ... 55

Specifying the Shadow/Source Table JOIN Type ... 56

Upgrading a Table with name and fieldid or tableid changed .. 56

Upgrading a Table with Table ID or Field ID Changed ... 56

Deleting Configuration Keys .. 57

Referencing Number Sequences within upgrade scripts .. 57

Performance Guidelines... 58

Performance Improvement Options ... 59

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet 59

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or Delete_From 59

Using RecordInsertList Class to Batch Multiple Inserts... 60

Optimizing X++ logic .. 60

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts62

Using Set-Based Updates in X++ .. 62

Executing Direct SQL from X++ .. 63

How to Execute Direct SQL for X++ .. 63

Best Practices Warning when Executing Direct SQL .. 63

Using Utility Functions to Execute Direct SQL .. 64

Documenting Direct SQL ... 64

Using Table Names in Direct SQL ... 64

Adding Literals in Direct SQL ... 64

Specifying DataAreaId in Where-Clauses ... 65

Determining Whether a Table or Field Exists in the Database ... 66

Defining String Lengths ... 67

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 5

Applying LTrim for String Comparisons in the WHERE Clause .. 67

Implementing Complex Inserts and Updates in Direct SQL ... 68

Creating Stored Procedures and Functions ... 68

Implementing Set-Based Updates with Joins ... 69

Using Direct SQL for Set-Based Updates .. 70

Using a Set-Based Insert Operation .. 71

System Sequence Considerations ... 72

RECID in Microsoft Dynamics AX 2012 .. 72

Assigning RECID on INSERT .. 73

Looking Up Table ID and Field IDs .. 74

Assigning Business Sequences on Insert ... 74

Calling FN_FMT_NUMBERSEQUENCE .. 77

Appendix 2: INTERNAL ONLY. ...78

Adding Upgrade Scripts to the Upgrade Preprocessing Framework in Source Depot... 78

Appendix 3: Debugging batch jobs. ...79

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 6

 Introduction

This document describes how to use the Microsoft Dynamics™ AX Data Upgrade Framework and how to write

data upgrade scripts for customer data upgrade data models (Microsoft Dynamics AX tables). The data upgrade

framework can be used to perform data correction or data transformation.

The intended audience for this document is Microsoft Dynamics AX application developers.

This document is based on Leveraging the Microsoft Dynamics AX 2012 Data Upgrade Framework, a

Microsoft Dynamics AX 2012 Technical Information document, and on the Microsoft Dynamics AX 2012 Data

Upgrade Framework. It has been updated regarding the new data upgrade framework and best practices for

performance.

Microsoft Dynamics AX 2012 supports upgrading data in the following ways:

 Microsoft Dynamics AX 4.0 to Microsoft Dynamics AX 2012

 Microsoft Dynamics AX 2009 to Microsoft Dynamics AX 2012

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 7

When is a Data Upgrade Script Needed?

The following list describes changes that require an upgrade script:

1) Change the name of a field, when field ID is different

2) Change the name of a table, when table ID is different

3) Delete a table and save data

4) Delete a field and save data

5) Add or change unique indexes

6) Change a non-unique index into a unique index

7) Restructure where data is stored. For example, move data from one field to another

8) Correct old data inconsistencies

9) Populate new tables with existing data

10) Populate new fields with existing data or a default value that is different from the default value for the data

type

There are changes that can be made in the data model without the need for an upgrade script. The following list

describes changes that can be made without an upgrade script:

1) Change the name of a field, when field ID is the same

2) Change the name of a table, when table ID is the same

3) Add a field to a table with a default value for every field

4) Add or change relations

5) Add or change non-unique indexes

6) Add or change delete actions

7) Add or change/delete temporary table

1. Terms and Abbreviations
The following table provides terms and definitions that relate to the data upgrade process.

Term/Abbreviation Definition

Source environment or source system The Microsoft Dynamics AX system which is

being upgraded.

The supported source systems for direct

upgrade to Microsoft Dynamics AX 2012 are:

 Microsoft Dynamics AX 4.0

 Microsoft Dynamics AX 2009

The upgrade starts while the source

environment is still live, but there is minimal

impact to the live system.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 8

Term/Abbreviation Definition

Transformation Data is transformed between source and target

environment by using field mapping and joins

between necessary tables.

Examples include the Address table

normalization and the Dimension table

normalization.

Source affected table Tables and fields within source environment

that have to be updated with transformations.

Examples are Dimension fields and Address

fields.

No update or changes are made to the source

table directly, changes are made to shadow

tables.

Source non-affected table Tables that have to be copied to the target

system as they are with the exception of

mapping transformation.

Shadow table Auxiliary table created on the source

environment. The shadow tables will contain all

fields from the source tables which have to be

updated.

Dictionary table New target Microsoft Dynamics AX 2012 tables.

These tables will be imported into the source

environment for the application pre-upgrade

checklist, and upgrade script execution where

needed. The definition of the table must match

the target system, the dictionary tables will be

copied to the target as they are.

Target affected table Target tables affected by transformations. The

table columns will be partially copied from the

source tables, and partially from the shadow

tables.

Target non-affected table Tables copied unchanged from the source

database. These tables already have the

Microsoft Dynamics AX 2012 schema. Mapping

between Microsoft Dynamics AX 4.0, Microsoft

Dynamics AX 2009, and Microsoft Dynamics AX

2012 schemas must be created on copy (similar

to SYNC).

Preprocess upgrade script Preprocess upgrade script executed by the

upgrade framework for a particular table in the

source environment based on the template

provided by an application team.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 9

Preprocess upgrade script template Template of a preprocess script created by an

application team and registered with the

upgrade framework API. Template provides the

following for the upgrade framework:

 Table and fields that will be involved in

the application pre-upgrade checklist.

 Business logic for the source data that

occurs for the application pre-upgrade

checklist.

Application pre-upgrade checklist tasks Application pre-upgrade checklist tasks that

require user intervention to clean-up before

the upgrade, for example Address

normalization.

Many of the addresses are duplicate. As a

result, the application pre-upgrade checklist

form will provide users with the ability to

decide how the master address entity should

look.

Delta upgrade script or delta job Upgrade scripts implemented by application

teams to find the changes within table records

since the last run of the related preprocessing

upgrade scripts.

Single-user mode No active user transaction is running on the

source system. Logic will check if only one

administrator user is connected to the source

Microsoft Dynamics AX system.

Exception tables System tables that are specific to the

installation that will be excluded from the copy

operation. For example, License tables.

Validation script Special upgrade scripts defined to identify

issues with upgrade or data upgrade. These

kinds of upgrade scripts should read data from

live Microsoft Dynamics AX tables and display

messages to take corrective action as needed.

Upgrade throttling Method used to pause scripts, resume scripts,

or change the amount of resources assigned to

execute a script.

Throttling APIs APIs provided by the upgrade framework that

can be used by upgrade scripts to support

pause and resume functionality.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 10

How to Upgrade Data for a Major Release or Service Pack

The data upgrade framework drives the data upgrade scripts that transform an older version of the

Microsoft Dynamics AX database to the new version. These steps are described in later sections.

The upgrade process consists of two parts:

 Preprocess in the source environment

 Upgrade in the target environment

The following diagram illustrates the data upgrade process.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 11

A. Source: AX4/AX2009 B. Target: AX6

A0. Customer imports XPO

into LIVE AX4/AX2009

system

Batch 1

2.1. Pre-

processing of all

tables with

Dimension

Normalization

change

Batch 2

2.2. Pre-

procession of all

affected tables

with Address

Normalization

change

Batch 3

Start Batch execution
A3. Pre-processing of affected source

tables

All pre-processing

done in a new tables

(no existing tables

altered yet), linked by

RefRecId with existing

tables if nessesary

A4. Backup and

switch to Single User

Mode AX4/AX2009

system

Batch 1

2.1. Identify

updated and

new records for

affected source

tables, and run

pre-population

script for them

Batch 2 Batch 3

Start Batch execution

A5. Verification and delta processing

All pre-processing

done in a new tables

(no existing tables

altered yet), linked by

RefRecId with existing

tables if nessesary

B1.Run Pre-Sync

scripts (non-data-

related)

B2. Run Table

CREATE (part of

sync)

B0. Deployment of

AX6

Batch 1

B3a.1. Generate

mapping for

Table 1 (system

A)->table1

(System B)

Batch 2 Batch 3

Batch execution

B3a. Bulk Copy and Sync of non-affected

tables

B3a.2. Copy

Table 1 from

system A to

system B using

Bulk Copy

B3a.3. Sync

Table 1

INDEXES

B3a.1. Generate

mapping for

Table 2 (system

A)->table1

(System B)

B3a.3.Copy

Table 2 from

system A to

system B using

Bulk Copy

B3a.3.Sync

Table 2

INDEXES

Mark table

“ready for copy”

Mark table

“ready for copy”

Batch 1

B3b.1. Generate

mapping for

Table 1 (system

A)->table1

(System B)

Batch 2 Batch 3

B3b. Bulk Copy and Sync of tables

affected by Dimension, Address etc

B3b.2.Copy the

table using JOIN

from Source

table and

Shadow table

from system A to

system B using

Bulk Copy

B3b.3. Sync

Table 1

INDEXES

B3b.1. Generate

mapping for

Table 2 (system

A)->table1

(System B)

B3a.3. Sync

Table 2

INDEXES

B3. A table processed is

affected by Dimension/

Address normalization?

No

Yes

B3b.0.

Get a table ready to be

processed

B5. Post-Sync

B3b.2.Copy the

table using JOIN

from Source

table and

Shadow table

from system A to

system B using

Bulk Copy

A1. Discovery and registration

of source tables/fields affected

by Address/Dimension

transformations

A2. framework CREATEs

shadow tables

2.1. Identify

updated and

new records for

affected source

tables, and run

pre-population

script for them

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 12

The Preprocess Upgrade Checklist (souce environment)

The preprocess upgrade checklist is a navigation pane that guides you through the preprocess data upgrade steps

in the source environment. Use the following steps to access the preprocess upgrade checklist.

1) Import the preprocess XPO into the source environment. The XPOs are located in the

retail\CD\DatabaseUpgrade directory on the setup CDROM.

2) Open the checklist manually. Navigate to the SysCheckList_PreUpgrade40/50 menu item.

Data upgrade is performed using the preprocess upgrade checklist in the following order:

1) Prepare for upgrade.

2) Prepare application data for preprocessing

3) Preprocess data on live system

4) Validate pre-upgrade

5) Finalize pre-upgrade

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 13

The following dialagram illustrates the preprocess upgrade checklist.

Figure 1. The preprocessing upgrade checklist

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 14

The upgrade checklist is a navigation pane that guides you through the data upgrade steps in the target

environment. It is invoked automatically when Microsoft Dynamics AX starts after a service pack or major

release is installed. Data upgrade is performed using the Upgrade Checklist in the following order:

1) Presynchronize

2) Postsynchronize

3) Upgrade additional features

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 15

The following diagram illustrates the upgrade checklist.

Figure 2. The upgrade checklist

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 16

Add Items to the Upgrade Checklist

This section describes how to add new items to the upgrade checklist. You will create a class that extends the

SysCheckListItem class. Use the following steps to add an item to the upgrade checklist.

1. Create a new class that extends the SysCheckListItem class and implements the

SysCheckListInterfaceUpgrade class. Name the class with the SysCheckListItem_<name> format where

<name> is a unique name.

2. Override the getCheckListGroup method and return the name of the group that the checklist item should

appear in.

For example, Upgrade preparation. You may use an existing group name or create a new group.

Nested groups can be created by using the GroupName\SubGroupName format.

Note: All checklist items must belong to a group.

3. Create a new action menu item and name the menu action item the same as the class created in Step 1. Set

the following properties:

a) Label: The text that should appear in the checklist for the item

b) HelpText: The help text that should appear below the checklist item text

c) ObjecType: Class

d) Object: Select the name of the class created in Step 1

e) SecurityKey: AdminSetup

4. In the class, override the getHelpLink method and provide a link to a .chm topic.

The following code illustrates an example of providing a link to a .chm topic:

#define.TopicId(‘AxShared.chm::/html/7b533e0b-f64d-410e-99ae-0296ace-

50900.htm’)

return SysCheckListItem::sharedGuide(#TopicId);

5. Override the getMenuItemName method and return the name of the action menu item created in Step 3.

6. Override the getMenuItemType method and return the type of the action menu item created in Step 3.

The following code illustrates an example of returning an action menu item:

return MenuItemType::Action;

7. If necessary, override the isRunnable method. Determine what conditions the checklist item should appear

in the checklist. Return True to show the checklist item, or return False to hide it.

8. Override the new method. Specify where your item should appear in the checklist and what other checklist

items your checklist item depends on.

a) Call this.placeAfter to specify the order of your checklist item.

The following code example illustrates the checklist item placed after the Detect code upgrade

conflicts checklist item.

this.placeAfter(classnum(SysCheckListItem_SysUpgradeDetectCon));

b) Call this.addDependency to specify which checklist items your checklist item depends on.

The following code example illustrates the checklist item depends on the Set current time zone

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 17

checklist item. The Set current time zone checklist item must be completed before this checklist item

is enabled.

this.addDependency(classnum(SysCheckListItem_BaseTimezoneUpgrade));

9. Override the main method. This is the method that is executed when the checklist item is clicked in the

checklist.

10. In class SysCheckList, add an entry corresponding to your checklist item to the list in method

checkListItems. The list contains all the possible checklist items. Add your entry in the correct order in

which it should appear in the list.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 18

The Data Upgrade Framework for the Target Environment

The data upgrade framework gives developers the infrastructure to insert data upgrade scripts written in X++.

The data upgrade framework manages the dependencies of the scripts, schedules them to be run in parallel by

batch clients, and provides progress reports on the running scripts. The data upgrade framework has a built-in

error recovery mechanism that helps to ensure system integrity when the upgrade has to be resumed after an

error.

With the exception of the base ReleaseUpdateDB class, the ReleaseUpdateDB* classes contain implementations

of data upgrade scripts. The scripts provide abstract methods and utility functions for data upgrade classes.

Note that classes with preprocessing upgrade scripts are derived from the class

ReleaseUpdateTransformDB, and have different types of scripts and ways of scheduling them.

 The class diagram of the upgrade script classes is shown in Figure 2.

… more classes

for other modules

addStandardJob()

+ addDependency()

+ addCrossModuleDependency()

+ moduleName()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ run()

ReleaseUpdateDB (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()
+ upgradeScript393()

+ upgradeScript394()

ReleaseUpdateDB39_Asset (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()

+ upgradeScript395()

+ upgradeScript396()

ReleaseUpdateDB39_Ledger (SYS)

TAP 3 ships

Release 4.0 TAP3

V39 classes for

upgrade to TAP3

Release 4.0

V40 classes for

upgrade to AX 4.0

In AX 4.0, no data

upgrade in the

Ledger module
+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript403()

+ upgradeScript404()

ReleaseUpdateDB40_Asset (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4013()

+ upgradeScript4014()

ReleaseUpdateDB401_Asset (SYS)

ReleaseUpdateDB401_Asset (DIS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4013()

ReleaseUpdateDB401_Asset (VAR)

+ upgradeScript4013()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4017()

AX 4.0 RTM ships

Release 4.0.1

V401 classes for

upgrade to AX 4.0.1

AX 4.0 SP1 ships

Overlaid:

Custom upgrade

scripts for AX

4.0.1 in DIS and

VAR layers

ReleaseUpdateDB401_Ledger (SYS)

+ upgradeScript4016()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4015()

Release 4.0 Service Pack 2

Upgrade scripts in SYP

layer, copied to 4.1 SYS

layer

AX 4.0 SP2 ships

Release 5.0

V41 classes for

upgrade to AX 5.0

include service

pack upgrade

scripts

AX 5.0 ships

ReleaseUpdateDB41_Asset (SYP)

+ upgradeScript41SP2()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41SP1()

ReleaseUpdateDB41_Asset (SYS)

+ upgradeScript41SP2()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41SP1()

+ upgradeScript413()

ReleaseUpdateDB41_Ledger (SYS)

+ upgradeScript416()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript415()

Figure 2. Data Upgrade Script Classes

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 19

Data Upgrade Scripts by Module

Data upgrade scripts are inserted into the data upgrade as methods of a ReleaseUpdateDB<NN>_<module>

class, where <NN> is the version of Microsoft Dynamics AX being upgraded to, and <module> is the module

name the script belongs to. These classes are derived from the base class ReleaseUpdateDB and are connected

to the data upgrade framework.

When you create upgrade scripts for your version of Microsoft Dynamics AX, you can use any of the new

classes in the following table according to your script's application module and the version you are developing.

401 41 60

ReleaseUpdateDB401_Administration

ReleaseUpdateDB401_Bank

ReleaseUpdateDB401_COS

ReleaseUpdateDB401_Cust

ReleaseUpdateDB401_Ledger

ReleaseUpdateDB401_Proj

ReleaseUpdateDB401_Vend

ReleaseUpdateDB41_Administration

ReleaseUpdateDB41_Asset

ReleaseUpdateDB41_Bank

ReleaseUpdateDB41_Basic

ReleaseUpdateDB41_COS

ReleaseUpdateDB41_Cust

ReleaseUpdateDB41_HRM

ReleaseUpdateDB41_Invent

ReleaseUpdateDB41_Jmg

ReleaseUpdateDB41_KM

ReleaseUpdateDB41_Ledger

ReleaseUpdateDB41_Prod

ReleaseUpdateDB41_Proj

ReleaseUpdateDB41_Req

ReleaseUpdateDB41_SMA

ReleaseUpdateDB41_smm

ReleaseUpdateDB41_Trv

ReleaseUpdateDB41_Vend

ReleaseUpdateDB60_Administration

ReleaseUpdateDB60_Asset

ReleaseUpdateDB60_Bank

ReleaseUpdateDB60_Basic

ReleaseUpdateDB60_Cat

ReleaseUpdateDB60_Client

ReleaseUpdateDB60_COS

ReleaseUpdateDB60_Cust

ReleaseUpdateDB60_EcoRes

ReleaseUpdateDB60_EMS

ReleaseUpdateDB60_HRM

ReleaseUpdateDB60_Invent

ReleaseUpdateDB60_Jmg

ReleaseUpdateDB60_KM

ReleaseUpdateDB60_Lean

ReleaseUpdateDB60_Ledger

ReleaseUpdateDB60_PBA

ReleaseUpdateDB60_Prod

ReleaseUpdateDB60_Proj

ReleaseUpdateDB60_PurchReq

ReleaseUpdateDB60_Req

ReleaseUpdateDB60_SMA

ReleaseUpdateDB60_smm

ReleaseUpdateDB60_Sourcing

ReleaseUpdateDB60_Trv

ReleaseUpdateDB60_Vend

Name ReleaseUpdateDB60 means upgrade to Microsoft Dynamics AX 2012. Pre-synchronization, Post-

synchronization and Additional features upgrade methods coexist in these classes.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 20

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 21

Figure 3. Upgrade Classes in the Applications Object Tree

SYS Versions and Data Upgrade of Interim SYS releases

The SYS layer contains the core functionality of Microsoft Dynamics AX. A modification to this layer is

shipped to partners and customers in beta versions (for example, Microsoft Dynamics AX 4.0 TAP3), final

release version (for example, Microsoft Dynamics AX 4.0), and refresh versions of major releases (for example,

Microsoft Dynamics AX 4.0.1), referred to here as interim SYS releases. The data upgrade framework supports

upgrades that span multiple SYS releases by providing the infrastructure to incrementally upgrade from one

SYS release to another, later release.

SYS versions are defined in the Base Enum SysReleaseVersion

Each ReleaseUpdateDB* class (except for the base ReleaseUpdateDB class and preprocessing upgrade classes)

is associated with a SYS version and named accordingly. The class hosts the data upgrade scripts that upgrade

the SYS data model from the previous SYS version to the current SYS version.

Upgrade scripts can span more than one SYS release. Therefore, each data upgrade script class inherits upgrade

scripts from the class of the same module in the most recent previous release. When you need upgrade scripts

for a new interim release, and when the upgrade script class for the corresponding module does not yet exist,

you create the class that uses the right naming convention and ensure this class inherits upgrade scripts from the

previous version of the upgrade script class of the same module.

For example, in Figure 2, the Ledger module has upgrade scripts for version 4.0 TAP3 (39) and 4.0.1 (401), but

does not have an upgrade script for release version 4.0 (40). Therefore, the class ReleaseUpdateDB401_Ledger

inherits directly from ReleaseUpdateDB39_Ledger. While for the Asset module, there are upgrade scripts for

versions 39, 40, 401, 41 (Microsoft AX 2009). Therefore the class ReleaseUpdateDB401_Asset must inherit

from ReleaseUpdateDB40_Asset, which in turn inherits from ReleaseUpdateDB39_Asset.

 Public class ReleaseUpdateDB401_Ledger extends ReleaseUpdateDB39_Ledger

 {

 }

 Public class ReleaseUpdateDB40_Asset extends ReleaseUpdateDB39_Asset

 {

 }

 Public class ReleaseUpdateDB401_Asset extends ReleaseUpdateDB40_Asset

 {

 }

 Public class ReleaseUpdateDB41_Asset extends ReleaseUpdateDB401_Asset

 {

 }

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 22

In order to incrementally upgrade from a SYS release that is two or more versions earlier, the

initPreSyncJobs, initPostSyncJobs and initAdditionalJobs methods must be overridden

and you must call “#initSyncJobsPrefix” to include the previous upgrade. The initPreSyncJobs,

initPostSyncJobs and initAdditionalJobs jobs detect the earlier (“from”) version of the upgrade

and skips if necessary.

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

 }

Finally, the purpose of an individual script is to upgrade a table's data from SysVer -1 to SysVer. Each

script is used to upgrade the data to the current version.

Data Upgrade for Service Packs

Service packs are shipped in the SYP layer of each major Microsoft Dynamics AX release. Service pack fixes

are rolled forward into the next version of the SYS release. Therefore, they can be viewed as a pre-release of the

next major release, and, to perform a data upgrade, the upgrade scripts are added to the upgrade script classes of

the next major release in the SYP layer.

For example, in Figure 2, a data upgrade script in the Fixed Asset module for the Service Pack for

Microsoft Dynamics AX 4.0.1 is implemented in the ReleaseUpdateDB41_Asset class in the SYP layer. This

script will be merged with the data upgrade scripts for SYS release Microsoft Dynamics AX 4.1 into

ReleaseUpdateDB41_Asset in the SYS layer. The data upgrade framework handles service pack releases by

detecting at individual script level what has been run already in a service pack of the previous SYS release and

skips the upgrade script.

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

 }

Data Upgrade for Customization

Customizations are performed in layers higher than the SYS (and SYP) layers. If the customization requires a

data upgrade, the same layer would be used to update the data upgrade scripts.

Customization of a data upgrade is performed by overlaying the SYS level data upgrade scripts classes in the

same layer as the customization. This can be achieved by either overriding a SYS layer upgrade script or by

adding a new upgrade script. This is illustrated in Figure 2. There are two overlaid ReleaseUpdateDB401_Asset

classes in the DIS and VAR layer.

Note: Service pack releases and customizations (including local features, option pack providers, and partner

customizations) have different purposes. Therefore, implementation of the data upgrade scripts for a Service

Pack and for customization data upgrade will be different.

When customizing a data upgrade by overlaying data upgrade script classes, the initPreSyncJobs,

initPostSyncJobs and initAdditionalJobs methods must be overlaid and the jobs from lower

layers must be included in the current layer. For example, the ReleaseUpdateDB401_Asset::InitPreSyncJob in

the VAR layer in Figure 2 should resemble the following sample:

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 23

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

 // Add SYS upgrade scripts, including overlaid upgrade scripts

 …

 // Add new DIS upgrade scripts, not DIS overlaid upgrade scripts

 …

 // Add new VAR upgrade scripts, not VAR overlaid upgrade scripts

 }

Create a single upgrade script that combines changes across multiple product versions

When upgrading to version n (target) from version n-2 (source), you can sometimes provide an algorithm that

upgrades data directly from the source to the target version without upgrading to the interim version. We call

these algorithms combined upgrade scripts. In cases for which you can create a combined upgrade script, follow

the best practices below:

1) Place the algorithm in the upgrade class for the source version, replacing the original algorithm. For

example, if you are upgrading from version 3.0 to 4.0 SP1, put the combined algorithm in the

ReleaseUpdateDB39 class.

2) Put a condition in a script in the upgrade class for the target version, setting it to execute only if you are not

upgrading from the source version. For example, change the script in the 4.0 SP1 version to

3) public void updateCustTrans()
4) {
5) if (ReleaseUpdateDB::getFromVersion() != sysReleasedVersion::v30)
6) {
7) Original script logic for upgrade from 4.0 to 4.0 SP1

8) }
9) }

Using Configuration Key to Remove Obsolete Objects after Upgrade

Note that after the upgrade is finished, you can disable the configuration keys “Keep update objects”

(SysDeletedObjects40, SysDeletedObjects41 and SysDeletedObjects60 for

Microsoft Dynamics AX 2012). After database synchronization is complete, all obsolete components of the data

model will be removed and performance will be improved. The components that are removed are those needed

to perform the data upgrade, but provide no value when the process is completed.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 24

Data Upgrade Scripts in the target environment

Data upgrade scripts comprise the majority of the data upgrade framework. For each version, a set of classes

exists - one upgrade class per module. Currently, there are 26 application modules for upgrade scripts. They are

named ReleaseUpdateDB<version>_<module>, for example ReleaseUpdateDB60_Bank.

Each of these classes contains scripts for pre-synchronization, post-synchronization and additional upgrades.

The scripts are scheduled by their attributes specified at the beginning of every script method.

The methods initPreSyncJobs, initPostSyncJobs and initAdditionalJobs are still kept for

version checking.

Each class can handle your upgrade script in one of four different ways - Start, Shared, Standard, and Final.

Note that it is important to choose the right one so that the script runs at the correct time and in the correct

manner:

 Pre-synchronization Post-synchronization Additional upgrade

Start (allow duplicates) -

Shared/Normal Shared/Normal Shared/normal

- Final (undo allow duplicates)

1) Presynchronize Start scripts

 (Executed first)

Start scripts are used to change indexes that have become unique in order to allow duplicates. This is a

modification of meta data and must be undone in a post-synchronization final script (see below). Start

scripts are run once versus once per company as with normal scripts.

2) Presynchronize Shared scripts

 (Executed once in parallel with pre-synchronization normal scripts)

Shared scripts are used mainly for cleanup jobs such as deleting duplicate records for tables that have

changed an index from allowing duplicates to being unique. Shared scripts are run at the same time as

normal scripts. The only way to ensure that a shared script is run before another shared script or a

normal script is to set up a dependency between the scripts. To perform this operation, see Writing

Data Upgrade Scripts below. Shared scripts are run only once, as compared to normal scripts, which

are run once per company

3) Presynchronize Standard scripts

(Executed for each company account in parallel with pre-synchronization shared scripts)

Normal scripts are run once per company and are used for company-specific clean up jobs, rebuilding

indexes, or deleting company-specific data that will be regenerated later.

4) Presynchronize Final scripts

Used very rarely. Pre-synchronization start, shared and normal scripts manage dependencies better.

5) Postsynchronize Start scripts

Used very rarely. Post-synchronization shared, normal and final scripts manage dependencies better.

6) Postsynchronize Shared scripts

(Executed once in parallel with post-synchronization normal scripts)

Shared scripts are run once and used to update non company-specific tables.

7) Postsynchronize Standard scripts

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 25

(Executed for each company account in parallel with post-synchronization shared scripts.)

Standard scripts are run once per company and are used to update company specific tables. (~90% of

all scripts are of this type)

8) Postsynchronize Final scripts

(Executed last)

Final scripts are used to undo changes to indexes that were made to allow duplicates using the pre-

synchronization start script. Final scripts are run only once, as compared to normal scripts, which are

run once per company.

9) Upgrade additional features scripts

Upgrade additional features scripts are used to upgrade of the non-core functionality after the

functional data upgrade

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 26

Writing Data Upgrade Scripts for Target Environment

To create a script you need to create a method on the appropriate class. For example, for

Microsoft Dynamics AX 2012 the class is ReleaseUpdateDB60_<module>. You must also inform the

framework how to handle the script. This is done by by providing attributes for their upgrade script methods like

following:

[UpgradeJobTypeAttribute(Standard),

UpgradeJobTitleAttribute ("@SYS97795"),

UpgradeJobConfiguratuionKeyAttribute (configurationKeyStr(ProjBasic)),

UpgradeJobConfiguratuionKeyAttribute (configurationKeyStr(HRMBasic)),

UpgradeJobDependsOnJobAttribute (ReleaseUpdateDB60_Proj, updateProjOnAccountPosting)]

void updateProjCategory()

{

 ProjCategory projCategory;

 ttsbegin;

 update_recordset projCategory

 setting Active = NoYes::Yes;

 ttscommit;

}

Here is the list of available attributes:

 Shared/ Standard / Start/ Final

 PreSync/PostSync/Additional

 Configuration keys associated with the script

 Script description(label)

 Does the script requires its own transaction

 (optional) Dependencies on another scripts or tables

 Table names

 Type of access to each table : Create, Read, Update, Delete

UpgradeScriptDescriptionAttribute : one attribute per method allowed

Value: String

UpgradeScriptStageAttribute: one attribute per method allowed

 Values: enum values PreSync, PostSync, Additional

UpgradeScriptTypeAttribute: one attribute per method allowed

 Values: enum values Standard, Shared, Start, Final

UpgradeScriptTransactionAttribute: one attribute per method

 Value: enum Yes/No

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 27

UpgradeScriptTableAttribute: several attributes allowed

Value: String (table name),

enum: Yes/No (Create),

enum: Yes/No (Read),

enum: Yes/No (Update),

enum: Yes/No (Delete)

for example,

[UpgradeScriptTableAttribute(tableStr(LedgerTable), false, true, true, false)]

Also, for legacy compatibility, Microsoft Dynamics still support another way of adding upgrade scripts, by

adding line in the initPreSyncJobs or initPostSyncJobs or initAdditionalJobs method on

the class. Each of these ReleaseUpdateDBxx_xxx classes contains three separate methods you can modify

to schedule your jobs – initPreSyncJobs, initPostSyncJobs and initAdditionalJobs. If you

would like your job to run in pre-synchronize phase, add it to the initPreSyncJobs method, otherwise add

it to the initPostSyncJobs method or to the initAdditionalJobs method for the additional feature

upgrade.

Note that this method is not recommended and is mainly preserved for legacy support. However, here are the

following are script templates you can use:

this.addStartJob(methodStr(<ClassName>, <MethodName>), "description",

[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addSharedJob(methodStr(<ClassName>, <MethodName>), "description",

[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addStandardJob(methodStr(<ClassName>, <MethodName>),

"description",[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

this.addFinalJob(methodStr(<ClassName>, <MethodName>),

"description",[configurationkeynum(ConfigurationKey1), …, configurationkeynum(ConfigurationKey1)]);

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 28

Writing Data Upgrade Scripts for ISV solution in the Target Environment

ISV has two options to write upgrade scripts:

Option1: Use the upgrade framework to write upgrade scripts in the same way as the core upgrade scripts have

been created in the SYS layer. Choosing this option, ISV solution should be installed before running the major

version upgrade, all ISV scripts will be loaded and scheduled along with the core upgrade scripts during the

major upgrade.

Option2: Use the upgrade framework to write upgrade scripts for a minor upgrade after the major version

upgrade has been completed. Choosing this option, ISV scripts can be implemented in the same way as option 1

with some differences:

 preSync script must use the enum ReleaseUpdateScriptStage::PreSyncUpdate

 postSync script must use the enum ReleaseUpdateScriptStage::PostSyncUpdate

 Additional script must use the enum ReleaseUpdateScriptStage::AdditionalUpdate

 Script class should implement initPreSyncUpdateJobs(),initPostSyncUpdateJobs() and

initAdditionalUpdateJobs(), all of these methods should contain a single call to the local macro,

for example:

void initPostSyncUpdateJobs()

{

 #initSyncJobsPrefix

}

 After installing the scripts, ISV installer should call the

ReleaseUpdateDB::RegisterForMinorUpgradeScript method in Microsoft Dynamics AX to register

the scripts. The following code example registers three scripts. Use ttsbegin and ttscommit to

make sure all or none of the script is registered.

ttsbegin;

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script01));

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script02));

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script03));

ttscommit;

 After the scripts have been registered, the next time Microsoft Dynamics AX starts, the Update

checklist will display to allow users to schedule and run the ISV scripts, the checklist can also be

opened manually using the display menuitem SysCheckList_Update. The following illustration

shows the upgrade checklist.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 29

Upgrade script configuration keys

Developers can provide an optional set of configuration keys associated with an upgrade script -

[configurationkeynum (<config key name1,config key name2, ... , config key name n>]. The script will be

scheduled to run if at least one configuration key associated with script is enabled during upgrade.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 30

You can do this by specifying attribute for your upgrade script:

UpgradeConfiguratuionKeyAttribute : several attributes allowed

 (attribute will be joined with OR; for complex OR and AND between configuration keys – upgrade

script should handle it with if/else condition within upgrade script)

 Value: Configuration key

For compatibility purposes, legacy way of specifying configuration key is still supported, but not recommended:

this.addFinalJob(methodstr(ReleaseUpdateDB60_Administration, allowDupSysExpImpTableGroupIdx),

"@SYS97945", [configurationkeynum(Asset), configurationkeynum(Bank)]);

Also, you can specify a set of configuration keys on the module level by using the setModuleConfigKey

function. The module configuration key set is joined with each upgrade script configuration key set for that

module.

this.setModuleConfigKey([configurationkeynum(ConfigurationKey1),…,configurationkeynum(Configur

ationKey1)])

Note that if you are using setModuleConfigKey, it should be called from InitPreSyncJobs, initPostSyncJobs and

InitAdditionalJobs method separately.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 31

Script Dependencies

You can also add dependencies between your scripts. This can be useful to avoid locking and for enforcing a

logical flow of your scripts. To add a dependency, you can add appropriate attribute before your upgrade script

(recommended) or include call to addDependency method in the appropriate InitXXXJobs method:

a) If you have a dependency between the scripts inside a module, use the

UpgradeDependsOnTaskAttribute or addDependency method.

this.addDependency(methodStr(<ClassName>, <MethodName>),

 methodStr(<ClassName>, <MethodName>));

where the first method must be executed before the second method executes.

b) If the script is dependant on another module’s script, you can use the

UpgradeDependsOnModuleAttribute or addCrossModuleDependency method to ensure

a correct execution sequence between scripts placed in the different classes:

this.addCrossModuleDependency(classnum(<ClassName>), methodStr(<ClassName>, <MethodName>),

 classnum <ClassName>, methodStr(<ClassName>, <MethodName>));

c) If the script is dependant on another module’s script from a previous version, you can use

the UpgradeDependsOnVersionAttribute or addCrossVersionModuleDependency

method to ensure that the correct execution sequence between scripts placed in the

different versions and modules:

this.addCrossVersionModuleDependency(

 classnum(<ClassName>),

 methodStr(<ClassName>, <MethodName>),

 SysReleaseVersion::<version>,

 classnum <ClassName>,

 methodStr(<ClassName>, <MethodName>),

 SysReleasedVersion::<version>);

d) If there are scripts depending on your script and you want to set the dependency but do not

want to change the other scripts, you can use the UpgradeTaskDependsOnMeAttribute or

UpgradeModuleDependsOnMeAttribute.

4. If a script is dependent on another script from a previous version but located in the

same module, then you do not need a dependency, the upgrade framework will provide

an implicit dependency in this case.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 32

Here is an example of the dependency tree:

Upgrade dependency tree

… more classes

for other modules

Start scripts

Standard and

Shared scripts

Final scripts

Upgrade starts

ReleaseUpdateDB39_Asset

Start scripts

ReleaseUpdateDB401_Asset

Start scripts

ReleaseUpdateDB41_Asset

Start scripts

ReleaseUpdateDB39_Ledger

Start scripts

ReleaseUpdateDB401_Ledger

Start scripts

ReleaseUpdateDB41_Ledger

Start scripts

ReleaseUpdateDB39_Asset

Standard and Shared scripts

ReleaseUpdateDB401_Asset

Standard and Shared scripts

ReleaseUpdateDB41_Asset

Standard and Shared scripts

ReleaseUpdateDB39_Ledger

Standard and Shared scripts

ReleaseUpdateDB401_Ledger

Standard and Shared scripts

ReleaseUpdateDB41_Ledger

Standard and Shared scripts

… more classes

for other modules

ReleaseUpdateDB39_Asset

Final scripts

ReleaseUpdateDB401_Asset

Final scripts

ReleaseUpdateDB41_Asset

Final scripts

ReleaseUpdateDB39_Ledger

Final scripts

ReleaseUpdateDB401_Ledger

Final scripts

ReleaseUpdateDB41_Ledger

Final scripts

… more classes

for other modules

Example of a Custom Cross module

cross version dependency

Example of a custom Cross
Module Dependency

Precautions When You Write Data Scripts Before Synchronization

Pre-synchronization data upgrade scripts are executed before the new version of Microsoft Dynamics AX

Object Data (AOD) is synchronized to the Microsoft Dynamics AX database and before the data is copied over

from the source system to target system. This means that the executed code will use a new version of metadata,

but the database will still be empty.

Also, please note that several special tables are synchronized during AOS startup even before the upgrade

checklist starts:

SysSetupLog

SysSetupCompanyLog

SysRecordTemplateTable

SysRecordTemplateSystemTable

SysTraceTable

SysTraceTableSQL

SysTraceTableSQLExecPlan

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 33

SysTraceTableSQLTabRef

SysUserLog

SysUserInfo

SysUtilElementsLog

SysCompanyUserInfo

SysInetCSS

SysInetThemeTable

SysImageTable

SysPersonalization

LanguageTable

SysSignatureSetup

SysDataBaseLog

SysExceptionTable

DEL_Batch

DEL_BatchGroup

BatchJob

BatchConstraints

Batch

BatchGroup

SysServerConfig

SysClusterConfig

BatchServerConfig

BatchJobAlerts

BatchServerGroup

BatchJobHistory

BatchHistory

BatchConstraintsHistory

BatchGlobal

EPStateStore

EPStateStoreSettings

EPServerStateCleanupSettings

EPWebSiteParameters

EPGlobalParameters

SysBCProxyUserAccount

SRSServers

AifWebsites

Currency

SysSQMSettings

SysProgress

SysBPParameters

SysRemoveFields

SysRemoveTables

SysRemoveConfig

SysRemoveLicense

SysLicenseCodeSort

DocuParameters

SysSecurityFormTable

SysSecurityFormControlTable

SysEvent

KMConnectionType

SalesParmUpdate

SalesParmSubTable

PurchParmUpdate

PurchParmSubTable

SysVersionControlParameters

ReleaseUpdateScripts

ReleaseUpdateScriptDependency

ReleaseUpdateJobStatus

ReleaseUpdateScriptsUsedTables

ReleaseUpdateBulkTableInfo

ReleaseUpdateSysDeleted

DocuOpenFile

TimezoneInfo

DEL_SysUpgradeTimeZone

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 34

DEL_SysUpgradeBaseTimeZone

WorkflowWorkItemDelegationParameters

WorkflowWorkItemCommentTable

SysUpgradeTreeNodeConflictInfo

SysUpgradeParameters

SysUpgradeOverriddenEstimates

ReleaseUpdateBulkCopyParameters

ReleaseUpdateBulkFlags

ReleaseUpdateBulkCopyTable

ReleaseUpdateBulkCopyField

DEL_SysSetupLog

ReleaseUpdateTransformTable

DEL_ReleaseUpdateTransformTable

ReleaseUpdateTransformSourceField

ReleaseUpdateTransformTargetField

ReleaseUpdateBulkCopyTableExceptions

ReleaseUpdateDiscoveryStatus

DEL_ReleaseUpdateDictionaries

DEL_SqlDictionary

DEL_SystemSequences

DEL_SysLastValue

ReleaseUpdateBulkCopyLog

ReleaseUpdateSpecialTableMapping

ReleaseUpdateSpecialFieldMapping

ReleaseUpdateBulkRefRecIdPatch

ReleaseUpdateExtendedDataTypes

ReleaseUpdateDataAreaOffsets

ReleaseUpdateConfiguration

DataArea

DEL_CompanyDomainList

ReleaseUpdateConfigKey

NumberSequenceDatatype

NumberSequenceDatatypeParameterType

SysXppAssembly

SecurityRoleAllTasksView

For these special tables, you cannot use pre-synchronization Start scripts. So, if you change field ID on one of

these tables, code changes must be made directly in the \Classes\Application\syncApplTables()

method, for example:

if (!this.isRunningMode())

{

 ttsbegin;

 if (isConfigurationkeyEnabled(configurationkeynum(CRSEGermany)))

 {

 ReleaseUpdateDB::changeFieldByName('TaxRepresentative', 41, 0, 75);

 }

 ttscommit;

}

syncTable(tablenum(CompanyInfo));

 Note that changes in Application class are risky and should be made with caution.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 35

The Data Upgrade Framework for the Source Environment

The data upgrade framework for the source environment gives developers the infrastructure to insert data

upgrade scripts written in X++ to be executed in the source environment before the actual upgrade in Microsoft

Dynamics AX 2010 starts

Framework and application scripts are shipped as a separate XPO file which customers have to manually import

into their live AX4 or AX5 environment before the upgrade process starts.

All source preprocessing scripts must be derived from the ReleaseUpdateTransformDB class.

Defining transformation and preprocessing scripts

Before writing upgrade scripts, you have to define transformation. Usually transformation and preprocessing

on the source environment are used an upgrade impact of a change is major, and using usual post-syncronize

upgrade script in the target environment is not an option for performance reasons.

By defining transformation, you provide the framework the tables you are going to use, which additional tables

the framework needs to create in the source system, and which scripts to run in the source environment. Later,

that information will be used when the upgrade framework copies the data to the target system.

Note that you cannot change any existing tables or any data in the existing source system. The only

tables in the source environment which you can insert records into are “shadow tables” created by the

framework or the “dictionary tables” backported from Microsoft Dynamics AX 2010.

The following lists the required steps to define transformation for each version, Microsoft Dynamics AX 4 and

Microsoft Dynamics AX 2009:

a) Import the preprocessing upgrade framework XPO file (from the installation CD) into the Microsoft

Dynamics AX 4 and Microsoft Dynamics AX 2009 development environments.

b) Create a class derived from ReleaseUpdateTransformDB, or modify the existing class. For each

version, a set of classes exists - one upgrade class per module. They are named

ReleaseUpdateTransformDB<version>_<module>, for example

ReleaseUpdateTransformDB41_Bank.

c) Create or modify the initTransformationJobs method. Add the definition of the new transformation.

d) Export your new class and all nessesary tables into the standalone XPO file.

To define a valid transformation, you have to do the following:

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 36

i) Create transformation

ReleaseUpdateTransformDB.New()
 ReleaseUpdateTransformDB transformation = new ReleaseUpdateTransformDB();

Instantiate a new Table Transformation class object

ii) Define source table

Application teams can:

- Hardcode the source table names (which may require end customers to update that code to fit
their customizations) or

- Create automated discovery based on their business rules, for example find all fields with
certain EDT or relationships.

void ReleaseUpdateTransformDB.SetSourceTable(Tablename _sourceTablename)

Description: Register transformation class for specific source affected table.

Example:

 transformation.SetSourceTable(tablestr(LedgerTable));

iii) Define source fields

void ReleaseUpdateTransformDB.addSourceField(identifiername _fieldName)

Description: Registers a field on the source affected table to be used for transformation. By registering field

a source, user tells upgrade framework NOT to copy that field from the source database, but copy a fields

registered as target field from the shadow table instead

Example:

 transformation.addSourceField(fieldstr(LedgerTable, AccountNum));

iv) Define Shadow table

Shadow tables should be included in the preprocessing XPO files so they can be created during the XPO import.

v) Define target fields

void ReleaseUpdateTransformDB.addTargetField(extendedtypeId _typeId, identifiername _fieldName)

Description: Registers a field on the target affected table to be used for transformation. That field will be

automatically created in the shadow table with TypeID and FieldName provided by the user. Later, when

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 37

processing BULK COPY of the data from source environment to target, this field will be automatically

copied to the target affected table from the shadow table

Example:

 transformation.addTargetField(typeid(Description), 'NewAccountNum');

i) Per Company To Global Table

If your table is global in Microsoft Dynamics AX 2012 but per company in the previous version, you need to

follow these steps:

 Call the API SetPercompanyToGlobal, for ex., in the ReleraseUpdateTransformDB50_Basic.

initTransformationJobs():transformation_DirPartyTable.SetPerCompanyToGlobal(NoYes::Yes

);SaveDataPerCompany is set to No in the shadow table

 Create a field name Shadow_DataAreaID in the shadow table

 Implement the logic to copy data from the source table to the shadow table as appropriate

ii) Schedule preprocess scripts

Data upgrade scripts in the source environment are executed in AX4 and AX5 environments. You have to create

a separate version of your script for AX4 and AX5 upgrades.

Application teams can provide 4 kinds of scripts for process their transformation, which have to be scheduled in

the initTransformationJobs method:

- Scripts called when the source system is live = live preprocessing. These scripts must be written
using row-by-row operations

- Scripts which will be called when system is in the single user mode, but also optionally can be
run by a user when the system is live = Delta processing

- Scripts called when the source system is only in Single User mode = Single User Preprocessing.
These scripts must be written as set-based operations.

- Scripts called in a test environment to validate to identify upgrade readiness and data validation
issues for data upgrade process. These scripts can be run in a Test Run mode which can be
scheduled by clicking on the first item in the preprocessing checklist.

void ReleaseUpdateTransformDB.SetLivePreProcessingScript(ClassId _scriptClassId, identifiername

_scriptName, ReleaseUpdateScriptType _scriptType = ReleaseUpdateScriptType::SharedScript, container

_configKeys = connull(), boolean _requiresXact = true)

Description: Register preprocessing script template (for the LIVE environment) to be used for the

transformation.

 transformation.SetLivePreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkAndPreparePreUpgrade));

void ReleaseUpdateTransformDB.SetDeltaPreProcessingScript(ClassId _scriptClassId, identifiername

_scriptName, ReleaseUpdateScriptType _scriptType = ReleaseUpdateScriptType::SharedScript, container

_configKeys = connull(), boolean _requiresXact = true)

Description: Register preprocessing script template (for the Singe User Mode and optionally for LIVE

environment) to be used for the transformation.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 38

 transformation.SetDeltaPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkPreUpgrade));

void ReleaseUpdateTransformDB.SetSingleUserPreProcessingScript(ClassId _scriptClassId, identifiername

_scriptName, ReleaseUpdateScriptType _scriptType = ReleaseUpdateScriptType::SharedScript, container

_configKeys = connull(), boolean _requiresXact = true)

Description: Register preprocessing script template (for the Singe User Mode environment) to be used for the

transformation.

 transformation.SetSingleUserPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkPreUpgrade));

void ReleaseUpdateTransformDB.SetValidationPreProcessingScript(ClassId _scriptClassId, identifiername

_scriptName, ReleaseUpdateScriptType _scriptType = ReleaseUpdateScriptType::SharedScript, container

_configKeys = connull(), boolean _requiresXact = true)

Description: Register preprocessing script template (for the Live validation environment) to be used for

validation. Validation scripts are only run in a test environment and not in a production environment. See the

section Logging Data Issues in Validation Scripts for more information about this script type.

 transformation.SetValidationPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

validatePreUpgrade));

iii) Save transformation

Save()

Description: Saves the transformation

Example:

TableTransformation.save ();

iv) Define dependencies between transformations

static void addTransformDependency(RefRecId _firstId, RefRecId _thenId)

Description: Adds dependency between transformations.

Example:

ReleaseUpdateTransformDB::addTransformDependency(Transformation1. getTransformationId(),Transformation2.
getTransformationId());

static void addTransformDependencyByTable(tableId _tableId, RefRecId _thenId)

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 39

Description: Adds dependency between one transformation and all other transformations that affect the specified

table, including transformations from other modules; i.e. ‘cross module’. These dependencies are resolved in

ReleaseUpdateTransformDB::initJobs.

Example:

ReleaseUpdateTransformDB::addTransformDependencyByTable(tablenum(<table>),Transformation2. getTransformationId());

Note: The first parameter is the source table of the tranformation, not the shadow table.

static void addTransformDependencyByMethod(classId _classId, IdentifierName _methodName, RefRecId

_thenId)

Description: Adds dependency between one transformation and another transformation by class/method. This

allows ‘cross module’ transformation dependencies to be defined. These dependencies are resolved in

ReleaseUpdateTransformDB::initJobs.

Example:

ReleaseUpdateTransformDB::addTransformDependencyByMethod(classnum(<class>), <methodName>,Transformation2.
getTransformationId());

v) Supporting Pause/Resume Functionality and Committing Data in Batches

During an upgrade you may want to pause an upgrade script and later resume the script from where it left off. In

addition, you may want to improve performance by committing processed data in batches. The Upgrade

Preprocessing Framework has API support for these scenarios. This is called script throttling. In most cases, live

preprocessing scripts should be implemented with throttling.

The ReleaseUpdateTransactionManager class implements the following methods that support script throttling:

NOTE: When calling the Set* methods in initTransformationJobs to register your upgrade scripts, be sure to set

the requiresXact flag to false. Example:

SetLivePreProcessingScript(_classnum(ReleaseUpdateTransformDB_Admin),

methodstr(ReleaseUpdateTransformDB_Admin, myScriptName,

ReleaseUpdateScriptType::SharedScript, connull(), false);

ReleaseUpdateTransactionManager::newTransactionManager(classId _upgradeScriptClassId,

identifierName _upgradeScriptMethodName, identifierName _helperMethodName = ‘’, freeText _blockId =

‘’)

Description: Creates a new instance of the transaction manager and associates it with your upgrade script. An

optional helper method name and block ID can be specified for multiple code blocks. The _blockId can be any

value that is appropriate for your situation.

NOTE: When you use multiple instances of ReleaseUpdateTransactionManager in your upgrade script, if one

instance receives a pause command be sure to properly exit the upgrade script. Do not allow the script to

continue. ReleaseUpdateTransactionManager::newTransactionManager will throw an exception if it detects

another instance was paused. See the example below.

bool initialize()

Description: Initializes the transaction manager. Returns ‘true’ if the script is in resume mode.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 40

validateTransaction(container _controlData)

Description: Call this method at the beginning of the while select loop in the upgrade script. The method

determines if a ttsbegin is needed. Note: For Microsoft Dynamics 2009, the ttsbegin and matching ttscommit

must be within the same code block. This method accounts for that limitation.

container geLasttIterationState

Description: Returns information that the script uses to determine at what point it should resume. In most cases,

this can be the last RecId processed by the script, but can be any set of values that make sense for your situation

(control data).

boolean doIterationAndContinue(container _controlData)

Description: Call at the end of the while select loop in the upgrade script. The method keeps track of how many

iterations the while select has processed and automatically performs a ttscommit and ttsbegin when the iteration

limit has been reached. For example, if a script should process batches in rows of 10,000, this method will count

the rows, then commit when it reaches 10,000. The method returns false if the script has been paused by the

user. Your script should ‘break’ at this point.

Here is an example of using the throttling API in a Live script. Note that the pattern for Delta scripts is different.

public void throttlingAPITest()

{

 testTableSource srcTable;

 testTable2Source srcTable2;

 testTableShadow shadowTable;

 RefRecId lastRecId;

 boolean isResuming;

 ReleaseUpdateTransactionManager transactionManager1;

 ReleaseUpdateTransactionManager transactionmanager2;

 ;

 // Do not delete_from the shadow table here

 // Create a new instance of the transaction manager

 transactionManager1 =
ReleaseUpdateTransactionManager::newTransactionManager(classidget(this),

 methodstr(ReleaseUpdateTransformDBTest, throttlingAPITest), ‘’, ‘1’);

 // Determine if this script is resuming from a previous pause

 isResuming = transactionManager1.initialize();

 // Retrieve the last RecId processed

 [lastRecId] = transactionManager1.getLastIterationState();

 while select *

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 41

 from srcTable

 order by RecId, RecVersion

 where (other conditions) && (srcTable.RecId > lastRecId || !isResuming) //
Understand your script logic and implement accordingly – don not copy and paste as
this example uses RecId to track the last processed row. Your scenario may vary.

 {

 // validateTransaction will start the transaction, if needed

 transactionManager1.validateTransaction([srcTable.RecId]);

 shadowTable.clear();

 shadowTable.Name = srcTable.Name;

 shadowTable.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager1.doIterationAndContinue([srcTable.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

 }

 // Complete the final transaction

 transactionManager1.endTransaction([srcTable.RecId]);

 // Create a new instance of the transaction manager for loop 2

 transactionManager2 =
ReleaseUpdateTransactionManager::newTransactionManager(classidget(this),

 methodstr(ReleaseUpdateTransformDBTest, throttlingAPITest), ‘’, ‘2’);

 // Determine if this script is resuming from a previous pause

 isResuming = transactionManager2.initialize();

 // Retrieve the last RecId processed

 [lastRecId] = transactionManager2.getLastIterationState();

 while select *

 from srcTable2

 order by RecId, RecVersion

 where (srcTable.RecId > lastRecId) || !isResuming

 {

 // validateTransaction will start the transaction, if needed

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 42

 transactionManager2.validateTransaction([srcTable2.RecId]);

 shadowTable.clear();

 shadowTable.Name2 = srcTable2.Name;

 shadowTable.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager2.doIterationAndContinue([srcTabl2e.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

 }

 // Complete the final transaction

 transactionManager2.endTransaction([srcTable2.RecId]);

}

Note: In the above example, we have to add the RecVersion to the Order By clause since Order

By does not work with RecId alone due to a bug in Microsoft Dynamics AX.

Note: The RecID might not be unique, select a combination of fields to track the processed
rows in your query. For example, with non-shared tables, DataAreaID might be used in your
query condition:

while select crosscompany AddressCounty order by DataAreaId, RecId, RecVersion

where (other conditions) && ((AddressCounty.DataAreaId > lastDataAreaId ||
(AddressCounty.RecId > lastRecId && AddressCounty.DataAreaId == lastDataAreaId)) ||
!isResuming)

In this case, DataAreaId should be an additional input/output when calling the throttling
APIs, for example:

…

[lastRecId, lastDataAreaId] = transactionManager.getLastIterationState();

…

if (!transactionManager.doIterationAndContinue([AddressCounty.RecId,
AddressCounty.DataAreaId]))

…

Note: DataAreaId is used for a shared script only. For a standard script, which runs per
company, DataAreaId is redundant in the above query.

Example of API use in a Delta script:

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 43

isResuming = transactionManager.initialize();//isResuming might not be used but
initialize() should be called.

delete_from shadow_InventCostTrans

notexists join RecId, recVersion from InventCostTrans

where InventCostTrans.RecId == shadow_InventCostTrans.RefRecId &&

 InventCostTrans.recVersion == shadow_InventCostTrans.RecVersionId;

while select RecId, recVersion, Dimension from InventCostTrans

order by InventCostTrans.RecId, InventCostTrans.recVersion

notexists join shadow_InventCostTrans

where InventCostTrans.RecId == shadow_InventCostTrans.RefRecId &&

 InventCostTrans.recVersion == shadow_InventCostTrans.RecVersionId &&

 ((InventCostTrans.RecId > lastRecId) || !isResuming) //  Do not add a
where clause for checking last recid processed here. Deltas may have occurred in
rows prior to this. The not exists join takes care of this.

{

 // validateTransaction will start the transaction, if needed

 transactionManager.validateTransaction([InventCostTrans.RecId]);

 shadow_InventCostTrans.RefRecId = InventCostTrans.RecId;

 shadow_InventCostTrans.RecVersionId = InventCostTrans.recVersion;

 shadow_InventCostTrans.DefaultDimension =
DimensionConversionHelper::getNativeDefaultDimension(InventCostTrans.Dimension);

 shadow_InventCostTrans.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager.doIterationAndContinue([InventCostTrans.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

}

// Complete the final transaction

transactionManager.endTransaction([InventCostTrans.RecId]);

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 44

i) Logging Data Issues in Validation Scripts

Validation scripts in preprocessing have a unique feature that allows them to identify data issues discovered and

alert the user. The script can rely on the framework to present these issues to the user, and can optionally

provide a custom UI for either displaying or fixing these issues. To provide these features, validation scripts can

use the following API:

ReleaseUpdateValidationLogger

ReleaseUpdateValidationMessages (macros)

log(ReleaseUpdateMessageId _messageId, ReleaseUpdateLogResultType _logResult, freeText _messageText,

freeText _resolution, SysInfoAction _action = null, ReleaseUpdateActionType _actionType =

ReleaseUpdateActionType::None)

logDetail(ReleaseUpdateMessageId _messageId, freeText _message)

ReleaseUpdateValidationLogger::newValidationLogger(classId _upgradeScriptClassId, identifierName

_upgradeScriptMethodName)

Description: Creates a new instance of the validation logger and associates it with your upgrade script.

log(ReleaseUpdateMessageId _messageId, ReleaseUpdateLogResultType _logResult, freeText _messageText,

freeText _resolution, SysInfoAction _action = null, ReleaseUpdateActionType _actionType =

ReleaseUpdateActionType::None)

Description: Logs a unique message. The message is tracked by _messageId (entered in

ReleaseUpdateValidationMessages) and only logged once per script, even if the log message is called multiple

times with the same messageId.

logDetail(ReleaseUpdateMessageId _messageId, freeText _message)

Description:Logs a detail message associated with a previously logged messageId (log).

The following is an example of a log entry and its corresponding details:

Log: There are invalid states in table x

Detail: Row with RecId 1 has invalid state ‘Wash’

 Row with RecId 2 has invalid state ‘Mass’

Row with RecId 100 has invalid state ‘Fla’

Example script using the validation APIs:

#ReleaseUpdateMessageIds

MyAddresses myAddresses;

SysInfoAction_ValidationForm action;

ReleaseUpdateLoggerInterface logger;

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 45

;

action = new

SysInfoAction_ValidationForm::newFormname(formstr(MyAddressesResolveState));

logger = ReleaseUpdateValidationLogger::newValidationLogger(

 classidget(this),

methodstr(ReleaseUpdateTransformDB41_Admin,

 validateMyAddresses));

while select *

 from myAddresses

{

 if (!this.IsValidState(myAddresses.State))

 {

 logger.log(

 #myAddressesStateInvalid, // MessageId

 ReleaseUpdateLogResult::Error, // Type

 "The following rows have invalid states:", // Message Text

 "Update these rows to use valid states.", // Resolution

 action, // SysInfoAction

 ReleaseUpdateActionType::Fix) //

ReleaseUpdateActionType

 logger.logDetail(

 #myAddressesStateInvalid,

 strFmt("RecId: %1 (%2)",

 myAddresses.RecId,

 myAddresses.State))

 }

}

j) Modify a subset of records in a table during upgrade

Using the upgrade framework, you can upgrade a subset of records in a table while keeping the rest unchanged.

For example, the MarkupTrans table has the Keep field which should only be changed for a subset of records.

The recommended solution is to write the upgrade scripts as if the field should be upgraded for the entire table.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 46

The difference is that the select statement in the upgrade scripts should have a where clause to indicate that only

records that should be upgraded are selected. Shadow records are then created for the records that should be

upgraded.

When registering the upgrade script in the transformation, it should set the shadow table join type to be left

outer join:

transformation.setShadowTableJoinType(ReleaseUpdateJoin::LeftOuterJoin);

During bulk copy, the framework will then automatically set the upgraded field to the upgraded value if one

exists otherwise it will keep the original value for the field.

This approach assumes that the fields on a record which determine whether it should have a record in the

shadow table cannot change in the source environment. Otherwise, it is a challenge to identify modified records.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 47

Writing Data Upgrade Scripts for Source Environment

Writing Live preprocessing scripts

Preprocessing scriptsc can Direct SQL or X++ application scripts executed from within AX by the framework:

Tables imported in XPO

from AX6Source LIVE environment

Source “affected”

table

(LedgerTable)

Shadow Table

(LedgerTable_

Dimension)

NEW

Dictionary table

(NewDimension)

Source “non-

affected” table

Target “affected”

table

(LedgerTable)

NEW

Dictionary table

(NewDimension)

Target “non-

affected” table

Source AX4/AX5 environment

Target AX6 environment

Pre-

processing

 RECID Link

Scripts must correctly accept source affected table names and field names, and respective shadow table name,

and perform necessary transformation of data from source tables/fields:

(1) Records in new tables: should be created directly in the new “dictionary” table (f.ex.
NewDimension table) which was imported from target system into the source system

(2) Modified fields of the existing “source” table: saved in a “shadow” table, linked with
the source table using RecId and RecVersionId link

preUpgradeScript(SourceTableName, SourceFieldNames[], ShadowTableName, ShadowFieldNames[])

{

// application logic goes here

//insert into new dictionary tables

WHILE SELECT FROM SourceTableName

{

// Check if record exist in Dictionary Table1

SELECT FROM Dictionary Table1 where <some condition based on SourceTableName >

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 48

// IF it does not exist, insert it

INSERT INTO DictionaryTable1 <some fields from SourceTableName>

// Check if record exist in Dictionary Table2

SELECT FROM Dictionary Table2 where <some condition based on SourceTableName >

// IF it does not exist, insert it

INSERT INTO DictionaryTable2 <some fields from SourceTableName>

// insert into “shadow table” modified source fields link to the Dictionary tables and

// RecId/RecVersionId link to the source table

S = INSERT INTO ShadowTableName

(REFRECID, REFDATAAREAID, RECVERSIONID, shadowFieldName[1], shadowFieldName[2])

SourceTableName.RECID,

SourceTableName.DATAAREAID,

SourceTableName.RECVERSIONID

DictionaryTable1.targetField1,

DictionaryTable2.targetField2

 executeStatement(S);

}

}

Note that if direct SQL is used, then 2 versions of the script has to be implemented by application teams –

Oracle and MS SQL

Writing Delta and single user mode preprocessing scripts

 Purpose of these scripts is to check the state of the source tables since preprocessing script was run on the LIVE

system, and resolve all discrepancies occurred since.

These will be Direct SQL or application scripts executed from within AX by the framework. It’ll be script’s

responsibility to identify new or modified records in the source table and take appropriate actions (for example,

rerun the business logic for new records). However, framework will provide some guidance on this, for

example:

There are 3 types of changes which may have happened to a record

a) How to identify new records
Script can identify new records by using shadow table RefRecIds.

For instance,

SELECT SourceTable.RecIDs NOT EXIST ShadowTable.RefRecId

If such record was found, we can execute preprocessing script on it

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 49

b) Record updated

Script can find updated records using RecVersion field. A search like provided below can be used:

SELECT SourceTable, ShadowTable where SourceTable.RECID = TargetTable.RECID and SourceTable.RecVersion !=

ShadowTable.RecVersion

If such record was found, we will delete the record from shadow table and re-run preUpgradeScript() on it.

However, that approach may leave some orphan records in the “dictionary” tables. Also, RecVersion may not be

very reliable due to third party components writing directly to the database

c) Record deleted

Script can identify new records by using shadow table RefRecIds, but usually there is no need no need as later

we will be joining Shadow table and Source table on RecID (see section 4). However, orphan records may be

left in the “dictionary” tables

As soon as table’s delta processing completed for all transformations, the table must be marked as ready to be

copied

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 50

Best Practices for Writing Data Upgrade Scripts

Best Practice Checks

In Microsoft Dynamics AX 2010, there are now several best practice checks that help to verify the completeness

of upgrade script attributes.

How An Upgrade Script Is Identified

Any method that is decorated with any of the following attributes is considered an upgrade script:

· UpgradeScriptDescriptionAttribute

· UpgradeScriptTypeAttribute

· UpgradeScriptStageAttribute

· UpgradeScriptTableAttribute

Note: There are conditions that further identify a method as an upgrade script that are not considered for

performance reasons when you check for best practices. During an actual upgrade, the additional conditions are

considered and validated.

The following lists BPError codes when a violation occurs and resolutions.

BPError code and condition/message Resolution

BPErrorMethodIsStatic

An upgrade script cannot be a static method.

Remove the static modifier.

BPErrorMethodHasParams

An upgrade script cannot accept parameters.

Remove the parameters.

BPErrorMissingReqDesc

For scripts that upgrade to Microsoft

Dynamics AX 2012, the

UpgradeScriptDescriptionAttribute attribute

is required.

Add the required attribute.

BPErrorMissingReqType

For scripts that upgrade to Microsoft

Dynamics AX 2012, the

UpgradeScriptTypeAttribute attribute is

required.

Add the required attribute.

BPErrorMissingReqStage

For scripts that upgrade to Microsoft

Dynamics AX 2012, the

UpgradeScriptStageAttribute attribute is

required.

Add the required attribute.

BPErrorMissingReqTable

One or more UpgradeScriptTableAttribute

attributes are required for all upgrade

scripts. In addition, any table referenced in

the method must have a corresponding

Add the required attribute for any tables referenced by the

upgrade script.

The following upgrade scripts are exempt from this requirement:

 deleteDuplicatesUsingIds

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 51

UpgradeScriptTableAttribute attribute.  deleteDuplicatesUsingNames

 indexAllowDup

 indexAllowNoDup

BPErrorTableNotFound

The table name specified in the

UpgradeScriptTableAttributes attribute is

not valid. Use the tableStr(<table>) method

to catch this issue at compile time.

Ensure the table specified exists and that the name is typed

correctly.

BPErrorConfigurationKeyNotFound

The configuration key specified in

UpgradeScriptConfigKeyAttribute attribute

is not valid. Use the

configurationKeyStr(<configurationKey>)

method to catch this issue at compile time.

Ensure the configuration key exists and that the name is typed

correctly.

BPErrorClassNameNotFound

The class name specified in

UpgradeDependsOnModuleAttribute

attribute or

UpgradeDependsOnVersionAttribute

attribute is not valid. Use the

classId(<class>) method to catch this issue

at compile time.

Ensure the class exists and that the name is typed correctly.

BPErrorMethodNameNotFound

The method name specified in

UpgradeDependsOnModuleAttribute

attribute, UpgradeDependsOnTaskAttribute

attribute, or

UpgradeDependsOnVersionAttribute

attribute is not valid. Use the

methodStr(<class>, <method>) method to

catch this issue at compile time.

Ensure the method exists and that the name is typed correctly.

BPErrorInvalidScriptVersion

The module for an upgrade script must have

a version macro defined in the class

declaration:

#define.version(sysReleasedVersion::v60)

Ensure the version macro is defined and that it is not Unknown

or vNext.

Transaction and Idempotency

It is an important requirement that each data upgrade script be idempotent. Idempotent means that if the

execution fails, it must be able to execute successfully with the desired results upon reexecution.

The data upgrade framework guarantees idempotency by enclosing each script within a transaction, ensuring

that the script is only executed once. Although this is a simple and robust way to ensure idempotency it results

in a performance decline when an upgrade script has complex logic in a loop on a large table. In

Microsoft Dynamics AX 4.0, this mechanism is optional such that an individual script can be run without the

transaction at the highest level. When this option is chosen, the individual script must implement its own

idempotency logic.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 52

Another important consideration for implementing idempotency is that you can upgrade from many different

versions. For example, if you write an upgrade script for SP2 of version N, when version N+1 is shipped, your

customers are upgrading from both Version N SP1 and Version N SP2. This means that some customers already

are upgraded and others are not. If your upgrade script is idempotent, you can just reuse it for the upgrade to

version N+1.

Note that if an upgrade script contains an error, it is easier to resolve the problem if the script is idempotent.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 53

Coding Best Practices

Indicating Progress

To supply progress status, you can use a simplified version operation progress by calling:

this.tableProgress(<tableId>);

and including the table-ID for the table you have just updated. This should only be called once in each

outermost loop (even if you are updating several tables in the inner loops).

Documenting Scripts

You should include meaningful comments in each data upgrade script to explain the functionality of the script.

Deleting a Table or Field from the Data Model

It is not possible to simply delete data from the data model as this would be the equivalent of deleting customer

data. This also applies to fields that were never used or fields that appear in the UI (unless they are temporary).

Removing a field or table requires careful planning and execution as follows:

1) Prefix the name of the item to be removed with "DEL_" and move it to the upgrade model, using the

following steps:

a) For fields and indexes:

i) Rename them in the AOT using F2 or the PropertySheet. The field/index will automatically be

moved into the upgrade model in the next build.

ii) In the rare case where you want the DEL_ fields/indexes to remain in the Foundation, you can add

the table to the exclusion list here:

//depot/main/source/application/CombineXPOs/NoDelExclusionList.txt.

This should only be used when production code needs the tables in a post-upgrade scenario.

b) For tables, enums and extended data types:

i) Turn-off version control.

ii) Rename the element in the AOT using F2 or the PropertySheet.

iii) Right-click the element and click Move to model. Click Foundation Upgrade, click Ok.

iv) In CoreXT type:

CD “source\application\sys\data dictionary”

For tables:

SD integrate “tables\<tablename>.xpo” “..\..\sysupgrade\data

dictionary\tables\DEL_<tablename>.xpo”

SD delete “tables\<tablename>.xpo”

For enums:

SD integrate “base enums\<enumname>.xpo” “..\..\sysupgrade\data

dictionary\base enums\DEL_<enumname>.xpo”

SD delete “base enums\<enumname>.xpo”

For extended data types:

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 54

SD integrate “extended data types\<typename>.xpo”

“..\..\sysupgrade\data dictionary\extended data

types\DEL_<typename>.xpo”

SD delete “extended data types\<typename>.xpo”

v) Turn-on version control again

2) Set the configuration property to: "SysDeletedObjectsXX" where XX is the next version, for example

"60" (for Microsoft Dynamics AX 2012)

3) Implement the upgrade script that will transform the data into the new data model. Verify the current model

is Foundation Upgrade when you create the class.

4) Test the upgrade script

5) Benchmark the upgrade script

6) (New for Interim Upgrade): When deleting a field from a table, do not delete the table or field

permanently from the AOT. They need to stay in the source until the release, where they are deleted is no

longer supported by upgrade. For example, if a Microsoft Dynamics AX 4.0 field is renamed in Microsoft

Dynamics AX 4.1 as a DEL_field, it needs to stay in the source until Microsoft Dynamics AX 2012.

7) When deleting a table, after you rename the table to DEL_TableName then the upgrade process will copy

the data from the previous version to this Del_ table. It is not a good practice to have two copies of the same

table. The old table & field can be deleted after creating the DEL_ table & fields. These DEL_ tables should

be tied to SysDeleted configuration keys.

Unique Indexes

It is important that the database can synchronize without errors when the customer upgrades. Three scenarios

require special attention when dealing with index changes:

1) Removing a field from a unique index

2) Adding a new unique index

3) Making a non-unique index unique, (setting the AllowDuplicates property to false)

All these scenarios make an index more restrictive and will cause the synchronization to fail if not handled

properly.

The easiest solution is to delete the data that collides with the index. This should only be done in situations

where it doesn't make sense to keep the duplicate records. This is performed using the following steps:

1) Create a start pre-synchronization upgrade script. This will change the index to allow duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowDup(dictIndex);

2) Create a normal upgrade script. This will move the data according to the new data model.

3) Create a final post-synchronization upgrade script. This will change the index to not allow duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowNoDup(dictIndex);

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 55

Consideration for date effective table in upgrade script

Some Microsoft Dynamics AX 2010 tables with date effective indexes that are disabled then re-enabled after

synchronization (see section ‘Unique Indexes’) will also require that the property ‘ValidTimeStateKey’ is also

set to ‘Yes’ along with re-enabling of the index. To set the ‘ValidTimeStateKey’ property on the index, follow

this pattern:

 public void allowNoDupAssetParmDeprRtsDEDateEffcIdx()

 {

 DictIndex dictIndex = new DictIndex(tablenum(AssetParametersDeprRates_DE),

 indexnum(AssetParametersDeprRates_DE, DateEffcIdx));

 dictIndex.modify(true, false, true);

 dictIndex.setAlternateKey(true, true);

 // Set the ValidTimeStateMode to the appropriate value for your index;

 // i.e. what the value was before the index was disabled.

 dictIndex.setValidTimeStateKey(true, ValidTimeStateMode::Gap, true);

 appl.dbSynchronize(dictIndex.tableid(), false);

 }

Preventing Copying of Table Data

Situations may occur where you may not want to copy the contents of a table from the source environment to

the target environment, for example, if the table will be used in the new version (but not if the table has become

obsolete). This can be useful when the contents of the table are auto-generated. To do this, create a pre-

synchronization shared script using the pattern:

 ReleaseUpdateDB::addBulkCopyTableException(tableStr(<table>),

ReleaseUpdateBulkCopyTableExceptionType::DoNotCopy);

Alternatively, you can create a pre-synchronization standard script using the delete_from construct.

Applying Field Options

Situations may occur when you need to perform operations on specific table fields during copy & sync. To do

this, create a pre-synchronization shared script using the pattern:

 ReleaseUpdateDB::addBulkCopyFieldOption(tableStr(<table>), fieldStr(<table>, <field>),

ReleaseUpdateBulkCopyFieldOption::LTrimTarget);

ReleaseUpdateBulkCopyFieldOption supports the following elements:

LTrimTarget

Applies the Sql LTRIM operator to the source value as it is copied to the target, allowing previously right

aligned data to be left-aligned in the target environment.

DoNotCopy

Removes the specified field from the source table’s SELECT statement during the bulk copy phase, preventing

the field’s data from being copied to the target system.

Truncating a Table During Copy & Sync

Situations may occur when you need to truncate the contents of a table in the target environment during copy&

sync. To do this, create a pre-synchronization shared script using the pattern:

 ReleaseUpdateDB::addBulkCopyTableException(tableStr(<table>),

ReleaseUpdateBulkCopyTableExceptionType::TruncateOnCopy);

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 56

This will allow data to be copied to the target table even if it is not empty.

Specifying the Shadow/Source Table JOIN Type

By default, shadow tables are joined to the source table during the bulk copy operation using a simple ‘JOIN’.

Specify a different join type using the following pattern in the preprocessing script:

 ReleaseUpdateTransformDB.setShadowTableJoinType(_shadowJoinType);

_shadowJoinType is of type ReleaseUpdateJoin and can be one of the following values:

 ReleaseUpdateJoin::Join // ‘JOIN’ (default)

 ReleaseUpdateJoin::FullOuterJoin // ‘FULL JOIN’

 ReleaseUpdateJoin::LeftOuterJoin // ‘LEFT JOIN’

 ReleaseUpdateJoin::RightOuterJoin // ‘RIGHT JOIN’

Upgrading a Table with name and fieldid or tableid changed

When a table or field’s name is changed, and there is a possible conflict between new and existing table or field

names, in order to preserve the table and its data, you must call the following methods in a pre-synchronization

Start script:

static void void ReleaseUpdateBulkCopyMap.addTableNameMapping(tableName _oldTableName, tableName

_newTableName, NoYes _system = NoYes::No)

static void ReleaseUpdateBulkCopyMap.addFieldNameMapping(tableName _oldTableName, fieldName

_oldFieldName, tableName _newTableName, fieldName _newFieldName, NoYes _system = NoYes::No)

Note: FIELDTYPE of the sourface and target mapping should match. If there is a mismatch in fieldtype the

framework do not copy the data.

Upgrading a Table with Table ID or Field ID Changed

When a table or field’s id is changed, no upgrade scripts are needed.

However, for legacy compatibilty, we support the following functions to accommodate ID of a table or field

change:

ReleaseUpdateDB::ChangeTableID (for table ID changes)

ReleaseUpdateDB::ChangeFieldID (for field ID changes)

You can also use the following methods to address tables and fields by name:

ReleaseUpdateDB::ChangeTableByName (for table ID changes)

ReleaseUpdateDB::ChangeFieldByName (for field ID changes)

Note that for few special tables listed in the “Precautions When You Write Data Scripts Before

Synchronization” section you cannot use pre-synchronization Start script. Please refer to that section for more

details and code samples.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 57

Deleting Configuration Keys

Note: Configuration keys should not be deleted. Configuration key changes are not handled by code upgrade,

therefore, changes will not be detected at code upgrade time. If a customization has been set up to use a

Microsoft Corporation shipped configuration key in custom tables, and if the configuration key is deleted, the

table will be lost during synchronization.

Referencing Number Sequences within upgrade scripts

If a number sequence has to be referenced within a X++ upgrade script, it is recommended to code that

reference as a separate method insetad of hardcoding it within the script itself, which will make the process of

changing it easier for a user running the upgrade

private NumberSequenceReference numberSequenceReference_SQ()

{;

 return NumberSeqReference::findReference(extendedTypeNum(SQ));

}

Later in the upgrade script, you can use that method to get the actual number sequence

num = NumberSeq::newGetNum (this.numberSequenceReference_SQ(), false);

salesQuotationTable.QuotationId = num.num();

Note that if the number sequence you are using is for an an extended data type that is new to Dynamics AX

2012, or if there is the possibility that it has not been previously instantiated within the current scope , you must

first instantiate the number sequence prior to using it. Although this is normally an administrator task, which

allows the administrator to override some default settings, this can be done programatically from the upgrade

script by calling:

NumberSequenceTable::autoCreate (extendedTypeNum(SQ), [scope]);

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 58

Performance Guidelines

Performance is a critical piece of the upgrade process and requires that you think about each line in your script.

Most companies will perform this task over a weekend, so the entire upgrade process must be able to be

completed within 48 hours. The actual update will typically be performed between Friday night and Monday

morning. In addition, prior to running the upgrade process on a live system, the upgrade process is tested several

times on a test system.

In addition to the following considerations, please read Performance Improvement Options to determine which

apply to your upgrade scripts:

1) Monitor and minimize the number of client/server calls.

2) Use record set functions whenever possible.

3) Break down your scripts into smaller pieces. For example, do not upgrade two independent tables in the

same script even if there is a pattern in the way the scripts work. This is because:

1) Each script, by default, runs in one transaction (=one rollback segment). If the segment becomes

too large, the database server will start swapping memory to disk, and the script will slowly come

to a halt.

2) Each script can be executed in parallel with other scripts.

1) Partial commits can only be used out of the box in one situation; this is when the table to upgrade is large

and contains a discriminator that can be used to split the script into several scripts. For example, update all

"Open" in one script and all "Closed" in another. The scripts should be set up to be dependant on each other

to avoid locking problems. (see point below regarding database lock contention)

2) Take care when you sequence the scripts. For example, do not update data first and then delete it

afterwards.

3) Be careful when calling normal business logic in your script. Normal business logic is not usually

optimized for upgrade performance. For example, the same parameter record may be fetched for each

record you need to upgrade. The parameter record is cached, but just calling the Find method takes an

unacceptable amount of time. For example, the kernel overhead for each function call in

Microsoft Dynamics AX is 5 ms. Usually10-15 ms will elapse before the Find method returns (when the

record is cached). If there are a million rows, two hours will be spent getting information you already have.

The solution is to cache whatever is possible in local variables.

4) Run benchmarking on your script using large datasets to verify your performance is acceptable.

5) If database lock contention prevents the data upgrade process from scaling up with multiple batch clients

running in parallel, consider disabling the transaction in the framework and ensuring idempotency by one of

the following:

 Using an existing field/condition that can check if the table/record has been updated

 Adding new fields to track upgrade status

 Using the primary key as ordering columns and recording the last row that was updated

1) Use index tunint. Create indexes to speed up the upgrade and possibly remove them after the upgrade.

Setting up a configuration key to SysDeletedObjects<version> can help you ensure that the index is deleted

after the upgrade is finished.

1) If there is no business logic in the script, rewrite the script to issue a direct query to bulk update the data. To

write Direct SQL queries, see Appendix 2: Guidelines for Writing Direct SQL in Upgrade Scripts.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 59

Performance Improvement Options

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet

If the script performs inserts, updates, or deletes within a loop, you should consider changing the logic to use

one of the set-based statements. If possible, use these set options to perform a single set-based operation.

Note when using set-based operations:

1) With Insert_RecordSet you cannot use a literal or function call in the field list. This operation does not

handle configuration keys so special care is required.

2) With Update_RecordSet you cannot perform inner or left outer joins.

3) Set based statements do not support memo fields.

Please refer to Speeding Up SQL Operations and Maintain Fast SQL Operations in the SDK documentation for

list and syntax of set based operations available in Microsoft Dynamics AX 2012.

Example:

Before performance improvement:

while select inventTable

 where inventTable.ItemType == ItemType::Service

{

this.tableProgress(tablenum(InventTable));

delete_from inventSum where inventSum.ItemId == inventTable.ItemId;

}

After performance improvement:

delete_from inventSum

 exists join inventTable

 where inventTable.ItemId == inventSum.ItemId

 && inventTable.ItemType == ItemType::Service

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or

Delete_From

If your script runs delete_from or update_from on a large table where the delete() or update() methods of the

target table have been overwritten, the bulk database operation will fall back to record-by-record processing. To

prevent this, call the skipDataMethods(true) method to cause the update() and delete() methods to be skipped.

Also, you can call the skipDatabaseLog(true) method to improve performance.

Example:

taxExchRateAdjustment.skipDataMethods(true);

taxExchRateAdjustment.skipDatabaseLog(true);

update_recordset taxExchRateAdjustment

 setting GovernmentExchRate = taxExchRateAdjustment.UseGovtBankRate

 where taxExchRateAdjustment.UseGovtBankRate == NoYes::Yes;

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 60

Using RecordInsertList Class to Batch Multiple Inserts

If the business scenario cannot be written as insert_recordset, consider using the RecordInsertList class to

batch multiple inserts to reduce network calls. This operation is not as fast as insert_recordset, but is faster than

individual inserts in a loop.

Example:

rilAssetTransMerge = new RecordInsertList(tablenum(assetTransMerge));

while select assetTrans

{

if (!AssetTransMerge::exist(AssetBookType::ValueModel,assetTrans.RecId))

{

 assetTransMerge.AssetId = assetTrans.AssetId;

 assetTransMerge.AssetGroup = assetTrans.AssetGroup;

 …

 rilAssetTransMerge.add(assetTransMerge);

 }

}

rilAssetTransMerge.insertDatabase();

Optimizing X++ logic

To optimize X++ logic, apply the following rules:

1) Minimize the amount of time spent in the X++ interpreter

2) For database related code, ensure SQL is fully utilized by including where conditions, for example, to check

for null values, using joins across tables

3) Use set-based updates and inserts instead of record-based updates and inserts

Examples of the wrong way to code:

while select forupdate projForecastCost

where ! projForecastCost.TransId

{

 if (! projForecastCost.TransId)

 {

 numberSeq = NumberSeq::newGetNum(ProjParameters::numRefProjTransIdBase());

 }

}

The where !projForecastCost.TransId is already checked by SQL. There is no need to check the

value again. The entire statement if (! projForecastCost.TransId) should be removed.

void someFunc()

{

 while select custTable

 {

 if (custNum != 0)

 {

 dosomething()

 }

 }

}

Again, this is not good coding practice. SQL can perfom this operation for you.

Rewrite the above function as:

void someFunc()

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 61

{

 while select custTable where custNum != 0

 {

 dosomething()

 }

}

Below is another example of wasting CPU cycles in the X++ interpreter:

private ledgerSRUCode somefunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 ledgerSRUCode = '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 ledgerSRUCode = '202';

 }

 and so on

 return ledgerSRUCode;

}

This function only gets the ledgerSRU. So, when this is done, you should exit the function and not execute the if

statements. Also, if you are aware of the most likely results, test for these most likely options early in your code.

Below is a corrected version:

private ledgerSRUCode someFunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 return '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 return '202';

 }

 and so on

}

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 62

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts

Using Set-Based Updates in X++

Whenever possible, set-based updates should be used in place of row-based updates. Set-based updates have a

partial implementation in X++ as insert_recordset, update_recordset, and delete_from. You can implement set-

based operations in X++ when:

1) An update involves data or references to a single table only. In other words, the data to be updated in a table

is not derived from another column. For example:

while select forupdate some_table where some_table.some_column == some_value

 {

 some_table.some_column = new_value;

 some_table.doUpdate();

 }

Can be rewritten in X++ as:

Some_table st;

Update_recordset st

Setting some_column == new_value

Where st.some_column = some_value;

If the update method is overridden, the update_recordset will change into a row-by-row update,

executing the update code for each row. You can prevent this by using the skipDataMethod operator.

Refer to Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or

Delete_From for more details.

1) An update_recordset or delete_from that includes in its selection criteria a check for existence or absence of

data in the same or different table. In X++ these can be implemented directly using the EXISTS Join or

NOT EXISTS Join.

For example:

while select SalesBasketId from salesBasket

 where salesBasket.CustAccount == guestAccount

 {

 delete_from salesBasketLine

 where salesBasketLine.SalesBasketId ==

 salesBasket.SalesBasketId;

 }

Can be rewritten as:

delete_from salesBasketLine

exists join salesBasket

where salesBasket.SalesBasketId == salesBasketLine.SalesBasketId

 && salesBasket.CustAccount == guestAccount;

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 63

Executing Direct SQL from X++

How to Execute Direct SQL for X++

1) If Direct SQL code is executed using X++, it requires checking for Code Access Security.as follows:

In the variable definition section, add:

SqlStatementExecutePermission permission;

;

In the code section, add:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

stmt.executeUpdate(stmtString);

 // the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

1) Direct SQL stored procedures are executed using X++ as shown in the following example:

str sql;

str dataAreaId;

Connection conn;

SqlStatementExecutePermission permission;

;

dataAreaId = curExt();

sql = = 'execute <StoredProcName> \' + dataAreaId + '\' \'' + numSeq + '\'';

permission = new SqlStatementExecutePermission(sql);

conn = new Connection();

permission = new SqlStatementExecutePermission(sql);

permission.assert();

conn.createStatement().executeUpdate(sql);

// the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

Best Practices Warning when Executing Direct SQL

Executing Direct SQL is a deviation from Best Practices recommendations, so, whenever Direct SQL is

executed, the X++ compiler will flag it as a best practice error. To suppress this warning, before the

stmt.executeUpdate(stmtString) statement you will need to place the following comment indicating

that this is a known deviation from best practices:

//BP Deviation Documented

The code will be changed to:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

 // BP Deviation Documented

 stmt.executeUpdate(stmtString);

 CodeAccessPermission::revertAssert();

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 64

Using Utility Functions to Execute Direct SQL

Two new methods, statementExeUpdate() and statementExeQuery(), have been added to the

ReleaseUpdateDB class. They can be used to run any Direct SQL statements in ReleaseUpdateDB based

classes. Note that, for security reasons, these functions do not have CAS assert() or revertAssert() methods,

these should be called by the caller. See the code example in Stored Procedure and function Guidelines for

ReleaseUpdateDB::statementExeUpdate and ReleaseUpdateDB::statementExeQuery

use.

Documenting Direct SQL

For debugging and maintenance purposes, always put the resulting direct SQL statement as a comment before

the code that performs the string construction.

Using Table Names in Direct SQL

Use ReleaseUpdateDB::backendFieldName and ReleaseUpdateDB::backendTableName to

look up the actual table name in the database. These methods use the correct look up procedure:

new DictTable(TableNum(<sometable>)).name(DbBackend::Sql)

new DictField(TableNum(<sometable>),FieldNum(<someTable>,<somefield>)).name(DbBackend::Sql)

Adding Literals in Direct SQL

It is important for security, amongst other advantages, to pass parameters into the Direct SQL statement. For

example, when creating Direct SQL code there are several scenarios where you will need to add literal values to

the SQL statement. The most common examples are data area identification and empty date strings. These

scenarios are handled by the following examples:

 /* UPDATE PROJTRANSPOSTINg

 SET EMPLITEMID = PET.EMPLID,

 CATEGORYID = PET.CATEGORYID,

 PROJTYPE = PT.TYPE,

 QTY = PET.QTy

 FROM PROJTRANSPOSTING PTP, PROJEMPLTRANS PET, PROJTABLE Pt

 WHERE PTP.TRANSID = PET.TRANSId

 AND PTP.PROJTRANSTYPE = 2

 AND PET.PROJID = PT.PROJId

 AND PTP.DATAAREAID = N'xyz' AND PET.DATAAREAID = N'xyz' AND PT.DATAAREAID = N'xyz' */

 sqlStmt = strfmt('UPDATE %1', #T(ProjTransPosting));

 sqlStmt += strfmt(' SET %1 = %2, %3 = %4, %5 = %6, %7 = %8',

 #F(ProjTransPosting, EmplItemId), #AF(ProjEmplTrans, EmplId),

 #F(ProjTransPosting, CategoryId), #AF(ProjEmplTrans, CategoryId),

 #F(ProjTransPosting, ProjType), #AF(ProjTable, Type),

 #F(ProjTransPosting, Qty), #AF(ProjEmplTrans, Qty));

 sqlStmt += strfmt(' FROM %1 %2, %3 %4, %5 %6',

 #T(ProjTransPosting), #A(ProjTransPosting),

 #T(ProjEmplTrans), #A(ProjEmplTrans),

 #T(ProjTable), #A(ProjTable));

 sqlStmt += strfmt(' WHERE %1 = %2 AND %3 = %4 AND %5 = %6 AND %7 = %8 AND %9 = %10 AND %11 =

%12',

 #AF(ProjTransPosting, TransId), #AF(ProjEmplTrans, TransId),

 #AF(ProjTransPosting, ProjTransType), int2str(enum2int(ProjTransType::Hour)),

 #AF(ProjEmplTrans, ProjId), #AF(ProjTable, ProjId),

 #AF(ProjTransPosting, DataAreaId), sqlSystem.sqlLiteral(projTransPosting.DataAreaId),

 #AF(ProjEmplTrans, DataAreaId), sqlSystem.sqlLiteral(projEmplTrans.DataAreaId),

 #AF(ProjTable, DataAreaId), sqlSystem.sqlLiteral(projTable.DataAreaId));

/*

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(DATEEXPECTED) FROM INVENTTRANS

 WHERE INVENTTRANS.DATAAREAID = INVENTTRANS.DATAAREAID

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 65

 AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

 AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

WHERE SHIPPINGDATEREQUESTED = '1900-01-01'

AND DATAAREAID = SALESLINE.DATAAREAID

AND EXISTS

(SELECT DATEEXPECTED

FROM INVENTTRANS

WHERE INVENTTRANS.DATAAREAID = N'ext'

AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

*/

 sqlStmt = 'UPDATE ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += ' SET ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = (SELECT MAX(' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ') FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

 sqlStmt += ' WHERE ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral('1900-01-01');

 sqlStmt += ' AND ' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(salesLine.DataAreaId);

 sqlStmt += ' AND EXISTS';

 sqlStmt += ' (SELECT ' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' +

dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

Specifying DataAreaId in Where-Clauses

The DataAreaId to be used in a where-clause may not be equal to the current company code returned by

curExt(). Therefore, curExt() should not be used to build the query string.

Because of the virtual company feature, it cannot be guaranteed that two tables in any join statement will fetch

its data using the same DataAreaId. In this instance a Where clause should not use the following predicate: A.

DATAAREAID = B.DATAAREAID.

The DataAreaId field should always be compared to a literal or a placeholder.

The following statement may not always work correctly:

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 66

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=INVENTSUM.DATAAREAID

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

The statement should always be written as follows:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'dmo'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

In the event that the InventTable is shared among several companies in the ‘dmo’ company, then the statement

should be as follows, where the virtual company is assumed to be named ‘vir’:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'vir'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

To get the correct DataAreaId, declare a table buffer of the specific table type and use the value of the

DataAreaId field in the table buffer.

To get the correct formatting with the ‘-s and the preceding N, parse the DataAreaId to the

SqlSystem.sqlLiterals method and use the return value.

The following shows the use of DataAreaId and sqlLiteral:

static void UseDataAreaId(Args _args)

{

 InventSum inventSum;

 InventTable inventTable;

 str sqlStr;

 SqlSystem sqlSystem = new SqlSystem();

 ;

 sqlStr = strfmt(@"DELETE FROM INVENTSUM

 WHERE DATAAREAID=%1 AND

 EXISTS (SELECT 'x' FROM INVENTTABLE B

 WHERE B.DATAAREAID=%2

 AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)",

 sqlSystem.sqlLiteral(inventSum.dataAreaId),

 sqlSystem.sqlLiteral(inventTable.dataAreaId));

}

Notes:

1) The example above assumes that DataAreaId is left justified, which is a valid assumption as it is a system

field where the justification cannot be changed by the customers or partners.

2) The example is only used for demonstrating the use of DataAreaId. The table names and fields should be

retrieved from the dict classes and the statement should be built using name(DbBackend::Sql).

Determining Whether a Table or Field Exists in the Database

You can test whether a table exists in the database by using the isTmp() method on the table buffer as follows:

static void TestTable(Args _args)

{

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 67

 SalesTable salesTable;

 ;

 if (!salesTable.isTmp()) // remember the NOT operator

 {

 // table exists in the database.

 // isTmp will return true if the table is

 // specifically marked as temporary or if it is

 // disabled by the configuration key.

 }

}

You can test whether a field exists in the database by testing its configuration key as follows:

static void TestField(Args _args)

{

 DictField dictField;

 ;

 dictField = new DictField(tableNum(SalesTable),

 fieldNum(SalesTable, PriceGroupId));

 if (isConfigurationKeyEnabled(dictField.configurationKeyId()))

 {

 // Field exists in the database

 }

}

There is no need to test every field. If you know the field is always in the database because the table is in the

database, then there is no need to test each field individually. You only need to test fields that have a different

configuration key to the table.

Defining String Lengths

When writing Direct SQL or stored procedures, it cannot be assumed that a given string field has the currently

defined length as it may have been changed by the user before the execution of the upgrade job.

A variable designed to hold an ItemId cannot be defined as NVARCHAR(20) even though the current

maximum length for the ItemId data type is 20. It may have been changed to a higher value, and, consequently,

the variable cannot hold the entire value for all items. The length of the variable should therefore be defined

taking the length of the type at execution time into consideration.

The current maximum length of a field should be retrieved through the

ReleaseUpdateDB::fieldStringSize method.

Applying LTrim for String Comparisons in the WHERE Clause

In X++, left and right justification is managed by the kernel using string comparisons in the WHERE clause.

Microsoft Dynamics AX 4.0 is left justified when installed, so there is no need to handle compares within

Microsoft shipped upgrade scripts. If customers use mixed-mode, then, in Direct SQL, the code needs to check

the justification of the two sides of the comparison and apply LTRIM on the right justified side if the two sides

have different justification properties.

The new static method fields2WhereClause() is created in ReleaseUpdateDB class. It returns a string to be

used in a Direct SQL WHERE clause.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 68

Implementing Complex Inserts and Updates in Direct SQL

Complex updates cannot be implemented directly in X++. When these conditions are encountered, the update

operations must be rewritten in Direct SQL.

If the method being examined involves one or a small number of update operations, the SQL can be constructed

as a string and executed as described in Executing Direct SQL from X++ in this document.

For more complex methods that operate on multiple tables, it is advisable that the method be rewritten as a

stored procedure. The stored procedure can be executed via X++ as described in Stored Procedure and Function

Guidelines in this document.

Creating Stored Procedures and Functions

If stored procedures are needed in order to implement direct Transact-SQL logic, it may be created during

execution time, executed, and then dropped after the upgrade script has run.

The AOS account has the privilege to create a stored procedure but it does not have execute permission on all

stored procedures or functions. In order for your upgrade script to have the permission to execute the stored

procedure or function you created, you need to prefix the object with the schema that the AOS account owns,

and always use the two part name:

[schema name].[object name]

in the create, execute, and drop statements.

To get the correct schema name, use the utility function:

ReleaseUpdateDB::getSchemaName().

Example:

void createDimHistory_PurchInvoice_DSQL()

{

 InventReportDimHistory dimHistory;

 VendInvoiceTrans vendInvoiceTrans;

 InventTrans inventTrans;

 SqlSystem sqlSystem = new SqlSystem();

 SqlStatementExecutePermission sqlStatementExecutePermission;

 str str_ExecSproc;

 str str_SQLEXEC = 'EXEC [%1].%2 %3';

 void runOraCode()

 {

 while select vendInvoiceTrans

 exists join inventTrans

 where inventTrans.InventTransId == vendInvoiceTrans.InventTransId

 && inventTrans.InvoiceId == vendInvoiceTrans.InvoiceId

 notexists join dimHistory

 where dimHistory.InventTransId == vendInvoiceTrans.InventTransId

 && dimHistory.TransRefId == vendInvoiceTrans.InvoiceId

 && dimHistory.TransactionLogType ==

InventReportDimHistoryLogType::PurchInvoice

 {

 InventReportDimHistory::addFromVendInvoiceTrans(vendInvoiceTrans);

 }

 }

 ;

 if (dimHistory.isTmp() || inventTrans.isTmp() || vendInvoiceTrans.isTmp())

 return;

 select firstonly RecId from vendInvoiceTrans;

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 69

 if (!vendInvoiceTrans.RecId)

 return;

 switch(SqlSystem::databaseBackendId())

 {

 case DatabaseId::Oracle:

 runOraCode();

 break;

 case DatabaseId::MS_Sql_Server:

 str_ExecSproc = strfmt(str_SQLEXEC,ReleaseUpdateDB::getSchemaName()

 ,#CREATEDIMHISTORY_PURCHINVOICE

,sqlSystem.sqlLiteral(vendInvoiceTrans.DataAreaId));

 sqlStatementExecutePermission = new

SqlStatementExecutePermission(str_ExecSproc);

 sqlStatementExecutePermission.assert();

 ReleaseUpdateDB::statementExeUpdate(str_ExecSproc);

 CodeAccessPermission::revertAssert();

}

When writing stored procedures that replace X++ methods or functions in the upgrade class, use the following

guidelines:

1) The stored procedure name should be the same as the method or function that it is replacing.

2) The stored procedure should include the original X++ statements as comments to provide context during

testing and troubleshooting.

3) Transactional control statements (BEGIN TRANSACTION, COMMIT) should not be coded in the stored

procedure. Transaction management is implemented in X++.

4) The stored procedure must accept a required parameter of DATAAREAID as data type NVARCHAR(3).

5) If the stored procedure will be populating a table with a formatted business sequence column (described in

Assigning Business Sequences on Insert section of this document), the procedure must accept the following

parameters:

1) @NUMBERSEQUENCE NVARCHAR(20). This will be used as a key to the

NUMBERSEQUENCE table to retrieve the next key value and format requirements.

2) @RJUSTIFY CHAR(1). If “Y”, this indicates the column is to be right justified.

Implementing Set-Based Updates with Joins

Update operations that involve true joins (in contrast to exists joins) cannot be directly implemented in X++ and

represent one case where a Transact-SQL rewrite is needed. The following code is an example of an update that

derives data from another table:

while select forupdate salesLine

 where salesLine.ShippingDateRequested == dateNull()

 join firstonly maxof(DateExpected) from inventTrans

 group by InventTransId

 where inventTrans.InventTransId == salesLine.InventTransId &&

 inventTrans.DateExpected != dateNull()

 {

 salesLine2 =

 SalesLine::findInventTransId(inventTrans.InventTransId,true);

 salesLine2.ShippingDateRequested = inventTrans.DateExpected;

 if (salesLine2)

 salesLine2.doUpdate();

 }

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 70

The corresponding Transact-SQL update is written as follows:

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(B1.DATEEXPECTED) FROM INVENTTRANS B1

 WHERE A.DATAAREAID = B1.DATAAREAID

 AND A.DATAAREAID = @dataareaid

 AND A.INVENTTRANSID = B1.INVENTTRANSID

 AND B1.DATEEXPECTED <> '1900-01-01'

 AND A.SHIPPINGDATEREQUESTED = '1900-01-01')

FROM SALESLINE A, INVENTTRANS B0

WHERE A.SHIPPINGDATEREQUESTED = '1900-01-01'

AND A.DATAAREAID = @dataareaid

AND A.INVENTTRANSID = B0.INVENTTRANSID

AND B0.DATEEXPECTED <> '1900-01-01'

Using Direct SQL for Set-Based Updates

The following code is an example of performing a set-based update using the

updateSalesAndTransLineDlvAddress:

 while select salesTable

 {

 update_recordset salesLine

 setting deliveryAddress = salesTable.DeliveryAddress,

 deliveryName = salesTable.DeliveryName,

 deliveryStreet = salesTable.DeliveryStreet,

 deliveryZipCode = salesTable.DeliveryZipCode,

 deliveryCity = salesTable.DeliveryCity,

 deliveryCounty = salesTable.DeliveryCounty,

 deliveryState = salesTable.DeliveryState,

 deliveryCountryRegionId = salesTable.DeliveryCountryRegionId

 where salesLine.SalesId == salesTable.SalesId

 && salesLine.DeliveryAddress == '';

 //The journal lines must be updated for intrastat to function

 update_recordset custInvoiceTrans

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custInvoiceTrans.SalesId == salesTable.SalesId

 && custInvoiceTrans.DlvCountryRegionId == '';

 update_recordset custPackingSlipTrans

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custPackingSlipTrans.SalesId == salesTable.SalesId

 && custPackingSlipTrans.DlvCountryRegionId == '';

 }

In this example, the code loops through every SalesTable Entry and:

1) Updates SalesLine with the relevant address information for the salesid.

2) Updates CustInvoicetrans with the address information for salesid.

3) Updates custPackingSlipTrans with the address information for salesid.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 71

Direct SQL needs to be rewritten in this case because of the need to:

1) Perform one mass update where possible.

2) Reduce looping on a large transactional table such as salesline.

The following is the Transact-SQL code that you should generate from X++:

UPDATE SALESLINE

SET DELIVERYADDRESS = T.DELIVERYADDRESS,

 DELIVERYNAME = T.DELIVERYNAME,

 DELIVERYSTREET = T.DELIVERYSTREET,

 DELIVERYZIPCODE = T.DELIVERYZIPCODE,

 DELIVERYCITY = T.DELIVERYCITY,

 DELIVERYCOUNTY = T.DELIVERYCOUNTY,

 DELIVERYSTATE = T.DELIVERYSTATE,

 DELIVERYCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID

FROM SALESLINE L,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND L.DATAAREAID = T.DATAAREAID

AND L.SALESID = T.SALESID

AND L.DELIVERYADDRESS = ''

UPDATE CUSTINVOICETRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTINVOICETRANS C,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

UPDATE CUSTPACKINGSLIPTRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTPACKINGSLIPTRANS C,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

The performance improvement achieved in this example is significant. On a database, Baseline ran for 24

minutes. With SET BASED CHANGE, it ran in 16 seconds.

This type of update, which does not require sequencing conditional to each record, can be written in X++ as a

sequence of Direct SQL statements.

Using a Set-Based Insert Operation

There are a number of cases in the upgrade process where tables that are new in Microsoft Dynamics AX 4.0

must be populated from one or more tables. If the volume of data to be processed in these tables is large, and if

INSERT_RECOREDSET does not achieve the desired performance, then using a set-based insert operation is

required.

Example Transact-SQL set-based inserts are written as:

INSERT INTO SOME_NEW_TABLE (column-list)

 SELECT column-list FROM SOME_OLD_TABLE WHERE criteria

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 72

System Sequence Considerations

A complicating factor when we use a Direct SQL set-based insert into a table in the Microsoft Dynamics AX

database is that tables have one or more sequentially assigned numbers which are derived from the

SYSTEMSEQUENCESand NUMBERSEQUENCETABLE tables.

A two-step process of initially populating a temporary table that uses a DBMS-specific sequence mechanism

(IDENTITY for Transact-SQL, ROW NUMBER for Oracle) and then copying the temporary table’s rows to the

final permanent table is required.

The two sections that follow provide Transact-SQL examples of populating both a system sequence (RECID)

and business sequence.

RECID in Microsoft Dynamics AX 2012

The RECID allocation algorithm has undergone significant changes in Microsoft Dynamics AX 2012. A RECID

can be allocated in two different ways:

1) Kernel automatically allocates the RECID during insert and INSERT_RECORDSET

2) User manually chooses to allocate the RECID

In the case of upgrade, we are concerned about #2. This section will document the allocation APIs, the usage

and some patterns. The document does not dwell in the allocation algorithm itself.

Manually allocating RECID

There are cases where you want to allocate the RECID manually in your script. The following are some of the

scenarios:

1) You are trying to do a bulk insert manually. There are cases where row by row insert is not sufficient and

you want to do a bulk insert. Import/Export code is an example of this usage pattern. In such a case, you

need to allocate the RECID manually.

2) An upgrade script uses direct SQL to insert data. In this usage pattern, you need to allocate RECID

manually.

3) Upgrade script was optimized to use RecordInsertList instead of row by row insert. But, cross references

need to be set up on another table (for example REFRECID). In such a case, allocate the RECID upfront for

the record so that cross references can be patched up.

In all the above scenarios, the allocation is done the same way, using the RECID allocation APIs. There are

three APIs that you need to know about:

RECID suspension - suspendRecids

RECID reservation - reserveValues

RECID releasing suspension - removeRecidSuspension

The APIs are members of the SystemSequence class.

The following is a code snippet of how to use the allocation APIs.

static void Job2(Args _args)

{

 SystemSequence s;

 AAMyTable t;

 int64 startValue;

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 73

 int i;

 ;

 s = new SystemSequence();

 s.suspendRecIds(tablenum (AAMyTable));

 startValue = s.reserveValues(10, tablenum(AAMyTable));

 for (i = 0; i <10; i++)

 {

 t.IntFld = i;

 t.RecId = startValue + i;

 t.insert();

 }

 s.removeRecIdSuspension(tablenum (AAMyTable));

}

Tips on using the RECID allocation API:

1) Once you suspend the RECID allocation for that table, the kernel will not dispense any more RECIDs for

that table on that session.

2) The ReserveValues API will guarantee contiguity of the RECID range that is being reserved.

3) If you try to insert an id that has not been reserved, then kernel will raise an exception.

4) If you are trying to assign a RECID without suspending, kernel will raise an exception.

5) If you do not remove the suspension after using the reservation API’s, the suspension remains until the end

of your session.

Assigning RECID on INSERT

RECID is a continuously ascending key value for each table in the Microsoft Dynamics AX schema. It is

derived from table SYSTEMSEQUENCES which keeps the next available key value (NEXTVAL) for each

table by that table’s Table ID.

Note that the SystemSequences table may be empty if the table is new and no records have been inserted. Please

refer to the ReleaseUpdateDB39_Cust.createDimHistorySprocs(), which provides an example of the solution for

that problem: it checks if a RECID existed and if not, inserting and deleting a record to get the RECID’s started.

In Microsoft Dynamics AX 4.0, RECID is a 64-bit integer column; this data type is implemented in SQL Server

as BIGINT.

Create a new instance of the systemSequence class

Suspend the RECID allocation by the kernel

Reserve the RECID by passing in the number of id’s to

reserve. The return value is the starting value of the

range you reserved. The API gaurantees that the

allocated id’s are contiguous.

Assign the RECID to the RECID column

Remove the suspension

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 74

The abbreviated example below illustrates using SYSTEMSEQUENCES and a temporary table using

IDENTITY for sequential numbers:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3

AS

DECLARE @NEXTVAL BIGINT,

 @ROWCOUNT BIGINT

SELECT ,

 RECID = IDENTITY(BIGINT,1,1) AS QUOTATIONID

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1

AND TABID = 1967

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT,

 RECID = QUOTATIONID+@NEXTVAL

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE SYSTEMSEQUENCES

SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1

AND TABID = 1967

GO

Looking Up Table ID and Field IDs

If you are gettingTABID in the stored procedure, you should perform the fetch from the SQL Dictionary.

Assigning Business Sequences on Insert

Business sequences are a more complex problem to solve with Direct SQL; not only is the number sequentially

assigned from a table (NUMBERSEQUENCETABLE), but you also have to consider the following factors:

1) The specific number sequence to be used for a specific column.

2) Whether the column is to be left or right justified.

3) The customer’s specific formatting requirements (FORMAT) for the column.

The first two factors are accessible in X++ and, as described in the stored procedure guidelines above, must be

passed as parameters to any stored procedure which must populate a formatted business sequence number.

Once the specific numbersequence to be used is known, the formatting requirement must be retrieved from

FORMAT column of the NUMBERSEQUENCETABLE table.

Notes:

1) The stored procedure is passed an indicator that specifies if right justification is to take place. A value of

“Y” means right-justify the column. The default is to left-justify the column.

Assign an IDENTITY column with a

starting value of 0 incremented by 1

Retrieve the next value for RECID

for this table (by TABID)

When we insert into the permanent table,

we add the temporary table’s IDENTITY

column to the next value retrieved from

SYSTEMSEQUENCES

We update SYSTEMSEQUENCES to

reflect the number of rows that we have

added to this table

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 75

2) Because formatted sequence columns are of different maximum lengths, you must look up the length of the

column that is to be formatted and record the length in your procedure. The instructions that follow will

describe how you pass the column’s length, along with the formatting requirements, to a user-defined SQL

function that will format the column correctly.

The example below illustrates the use of a user-defined function FN_FMT_NUMBERSEQUENCE which

accomplishes the formatting and justification requirements of a business sequence column:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1)

AS

DECLARE @NEXTREC BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

SELECT QUOTATIONID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT,QUOTATIONID,@NEXTREC, @RJUSTIFY_LENGTH) ,

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE NUMBERSEQUENCETABLE

SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAID@NUMBERSEQUENCE

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

In many cases it will be necessary to assign a sequential number both for RECID and a business sequence

column. However, SQL Server only permits one IDENTITY column per table.

The following example demonstrates how to use the single IDENTITY column for both purposes. This example

is also useful as a template for creating new procedures to upgrade data into new tables in the

Microsoft Dynamics AX 4.0 schema:

You must determine the column’s

length if it is to be right justified

and set a variable so we can pass

that to the formatting function

As in the previous example, we create

an IDENTITY column in the

temporary table with initial value of 0

Retrieve the next value from

NUMBERSEQUENCETABLE using

the NUMBERSEQUENCE key

supplied

Details on calling this function follow

Update NUMBERSEQUENCE to

reflect the number of rows added to

the table

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 76

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1) =’N’

AS

DECLARE @NEXTREC BIGINT,

 @NEXTVAL BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

-- Set the length of the column that is to be right-justified

-- Confirm length in table definition

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

-- The SELECT INTO creates a temp table

-- RECID is assigned during the insert and given

-- a sequentially ascending number starting with 0

SELECT QUOTATIONID = ‘’

 RECID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

-- Retrieve next key value for RECID

-- Note TABID; you need to determine the

-- value here from table SQLDICTIONARY

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1 AND TABID = 1967

-- Retrieve next key value for business sequence (QUOTATIONID)

-- NUMBERSEQUENCE is supplied in X++ and passed in @NUMBERSEQUENCE

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID AND NUMBERSEQUENCE = @NUMBERSEQUENCE

-- Insert from temp table to final table. Note that temp table RECID

--is sued to supply values to both QUOTATIONID and REID in final table

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT, RECID,@NEXTREC, @RJUSTIFY_LENGTH) ,

 ,

 RECID+@NEXTVAL

FROM #TEMP

-- Row count of temp table then used to update both NUMBERSEQUENCETABLE

-- and SYSTEMSEQUENCES tables

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE NUMBERSEQUENCETABLE SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAIDAND AND NUMBERSEQUENCE = @NUMBERSEQUENCE

UPDATE SYSTEMSEQUENCES SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1 AND TABID = 1967

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 77

Calling FN_FMT_NUMBERSEQUENCE

A user defined function FN_FMT_NUMBERSEQUENCE is provided to assist with the formatting

requirements of a business sequence column. This function enables the following operations to be performed:

1) Adds the value of the IDENTITY column to the NEXTREC value retrieved from

NUMBERSEQUENCETABLE.

2) Formats the result according to the FORMAT column retrieved from NUMBERSEQUENCETABLE.

3) Right justifies the formatted column to the length specified. If the function encounters a value of 0, no

justification occurs and the formatted value remains left justified by default.

The parameters that are supplied to FN_FMT_NUMBERSEQUENCE are:

4) The FORMAT column value from NUMBERSEQUENCETABLE.

5) The integer value to be formatted.

6) The value from NEXTREC in NUMBERSEQUENCETABLE. If this is not supplied, it is set to 0 by

default.

 The length of the column to be right justified. If this is not supplied it is set to 0 by default. If 0 is

specified or becomes the default, then no justification occurs.

The ReleaseUpdateDB38_Basic::createFnFmtNumberSequence method creates the

FN_FMT_NUBMERSEQUENCE function. If your script needs to call the function, you should make the script

depend on the ReleaseUpdateDB38_Basic::createFnFmtNumberSequence script and then you can reference the

function in your Direct SQL code.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 78

Appendix 2: INTERNAL ONLY.

Adding Upgrade Scripts to the Upgrade Preprocessing Framework in Source

Depot

The Upgrade Preprocessing framework consists of two main parts: the Framework itself, which provides the

base functionality for upgrade; and application team business logic that performs preprocessing specific to a

business module. During build, these elements are combined into a single XPO and dropped on the CD. Below

are the steps to follow when an application team needs to add scripts to the Upgrade Preprocessing Framework

(note that these steps are the same for AX4, substituting appropriate file names):

1. In an AX5 environment, import the base preprocessing framework XPO from %SDROOT%\

source\Application\UpgradePreProcessingAX5\SharedProject_Ax50PreUpgradeFramework.xpo and

SharedProject_Ax50PreUpgradeFrameworkShare.xpo. If your scripts will depend on other projects

then you need to import them as well.

2. Create upgrade business logic as described in the section ‘The Data Upgrade Framework for the Source

Environment’ and add to a new private project.

3. Once coding is complete, export the USR layer without IDs of the private XPO created in Step 2 and add it

to Source Depot in %SDROOT%\ source\Application\UpgradePreProcessingAX5.

4. Edit the file %SDROOT%\source\Application\UpgradePreProcessingAX5\XPOFileList.txt, adding the

private XPO to the list.

5. Within a CoreXT window, navigate to %SDROOT%\source\Application\UpgradePreProcessingAX5 and

type ‘BUILD RETAIL …’ to test that the XPO is properly combined.

5.1. WARNING: Executing ‘BUILD RETAIL …’ in any other folder may uninstall the AX client on the

machine.

6. Verify that the resulting XPO appears on the CD and contains the newly created business logic:

6.1. %SDROOT%\drop\retail\CD\DatabaseUpgrade\UpgradeAX5.xpo.

7. Finally, verify that the resulting XPO will successfully import and compile by importing it into a clean

AX5 environment.

How to: Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

Page 79

Appendix 3: Debugging batch jobs.

Debugging upgrade batch jobs in Microsoft Dynamics AX 2012:

Batch jobs in Microsoft Dynamics AX 2012 run as IL code by default, please follow this link to see how to

debug IL code in Microsoft Dynamics AX 2012.

Note : When you add or change an upgrade script in the batch, you must do an X++ IL incremental build. Right-

click on the root node of the AOT, point to Add-Ins, and then click on X++ IL incremental build.

For some reason, you need to turn of IL so scripts can run as X++ code then follow these steps:

 Run regedit.exe and create a string value ilbatch under

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Dynamics Server\6.0\01\Original

(installed configuration)

 Set the value to 0.

 Restart the AOS.

Deugging upgrade batch jobs in AX4/5:

 Edit the method runsImpersonated of your batch job class to always return True. For upgrade

scripts, the class is ReleaseUpdateExecute.

 In AX5 this fix may be needed: http://hotfix/search.aspx?search=962952

http://hotfix/search.aspx?search=962952

